
1-4244-1243-9/07/$25.00 ©2007 IEEE

Improving Software API Usability through Text Analysis: A Case Study

Robert B. Watson
Microsoft Corporation

bob.watson@microsoft.com

Abstract
Technical writers who want to be more involved in the

earlier stages of software product development must often
find ways to demonstrate how their skills can benefit the
initial design process. This case study describes how the
application of technical communication skills and tools
helped improve the usability and clarity of a new applica-
tion program interface (API) by performing a text analy-
sis of the API elements. The case study presents the theory
upon which this approach is grounded and describes how
the theory was applied to analyze a specific API. The pa-
per concludes with a review of how this analysis method
could be transferred to other projects and how the tools
used in this analysis can be applied to benefit the design,
development, and documentation processes of APIs. Key-
words: API usability, text analysis, document design, sin-
gle-source, content management system.

Introduction
In 1996, Johndan Johnson-Eilola [1] observed that,

“The support model of technical communication encour-
ages corporations to view technical communication as
something to be added on to a primary product.” Today,
13 years later, technical communication is still viewed by
many to be a support or peripheral role; however, the case
study in this paper describes how I expanded my role as a
technical communicator to contribute to the product de-
sign. This case study presents a tangible example of how
to apply the tactics for rearticulating technical communi-
cation that Johnson-Eilola describes in [1].

In the worst-case, support-model writing scenario, the
writing process often begins in the later phases of the
product development cycle. In my experience as a techni-
cal writer, inconsistencies in the design can complicate
the job of writing clear and easy-to-read documentation.
Identifying and removing these inconsistencies earlier in
the product development cycle benefits everyone—
especially the customer. While technical writers can help,
they are not always part of the design process and to get
closer to the early stages of the product design process
might require that technical writers demonstrate how their
skills can contribute to the initial design. Finding the op-
portunity and the means by which to demonstrate their
benefit can be difficult and doing so might require some
experimentation, as Johnson-Eilola suggests in [1]. Unfor-

tunately, a product development team that subscribes to
the support model of technical communication might not
recognize the benefit of involving a technical writer early
in the design process, placing the burden of demonstration
on the technical writer. Although Beck [2], for example,
suggests having technical writers on extreme program-
ming (XP) teams, if technical writers are not present dur-
ing the early stages of design, it can be difficult for them
to demonstrate how their skills can help.

The method described in this case can help technical
writers who are already on design teams as well as those
coming in to a project later in the development process. In
this case study, I applied the method after the API had
been designed but before it had been fully implemented.
Whether early or late in the design process, the method
used in this case study can be used by a technical writer to
apply his or her role as a user advocate. It applies the core
technical communication skills that [1] describes to help
improve API design and enables the technical writer to
present this benefit in a way that the product development
team can appreciate.

Literature Review
This section describes the previous work on which the

method used in this case study is based and starts by rec-
ognizing that technical writers can provide more than a
just a support role to the product development process.
This is followed by the usability, design, and documenta-
tion principles that form the theoretical foundation of this
method.

Relocating Technical Writer Value

Johnson-Eilola [1] suggests that technical writers have
many skills that can aid design and refers to Robert
Reich’s list of the four key areas to use for reinventing
technical communication education [3]. While Reich’s list
was intended to improve education, I found that the areas
he lists—collaboration, experimentation, abstraction, and
system—could also be applied successfully in the work-
place.

For experimentation, Johnson Eilola suggests in [1]
that, “Technical communicators must continue to investi-
gate broader forms of usability studies.” He concludes the
section on experimentation with, “Insisting on broader

978-1-4244-4358-1/09/$25.00 ©2009 IEEE

forms of usability serves a double purpose for technical
communicators: it helps us produce documentation and
assistance more attuned to a user's broader needs, and it
also shifts the focus of value away from a discrete tech-
nology and toward communication and learning.”

Usability Principles

Arnold [4] suggests that we consider programmers as
humans whose interface to a computer is through an API.
He suggests that it would be reasonable to apply human
factors principles to the study of APIs. Henning [5] pre-
sents the consequences of poorly designed APIs in terms
of reduced reliability of the final product and reduced
productivity of the programmer using the API. Both of
these consequences can be measured by technical support
call volume. Clearly unreliable products will generate
support calls from end-users, and APIs that are difficult to
use or understand are likely to generate more technical
support calls from programmers than those that are easily
understood. Each support call represents a cost to the cus-
tomer who cannot accomplish a task and a cost to the
vendor who must pay the technical support engineer who
answers the call.

API usability can be measured during the design and
observed throughout the development of an API. Green
[6] describes 12 dimensions for measuring API usability,
one of which is consistency. Aligning the terminology
used in the API to ensure it is consistent reduces distrac-
tions, which helps to reduce the cognitive load [7] re-
quired to learn a new API. Aligning the terminology also
makes it possible for a programmer to feel more confident
when they transfer what they learn in one part of the API
to another. Clarke [8] describes how these 12 dimensions
can be (and, in fact, were) applied in a practical setting
and used to evaluate the usability of Microsoft’s .NET
Framework [9]. McLellan [10] also describes API usabil-
ity factors that can be studied.

Design Principles

Computer programming and API design have been
around long enough to establish design principles that can
be used for heuristic evaluation. One such reference is
[11]. Chapter 2 in [11] is titled “Framework Design Fun-
damentals,” for example, and contains many guidelines
for software developers to use when designing new APIs
for Microsoft’s .NET Framework. While the guidelines
presented in [11] are written for the .NET Framework,
many can be applied directly or, with some adaptation, to
other programming languages and environments. To vary-
ing degrees, other languages have similar guidelines
documents such as [12] for the C language and [13] for
Java. Many organizations have also established coding
conventions and standards.

 One section in chapter 2 of [11] is titled “The Princi-
ple of Self-Documenting Object Models.” It describes

how API documentation starts with the API itself when it
says, “it is very important to design APIs that do not re-
quire that developers read documentation every time they
want to perform a simple task.” While the documentation
of the API might start with the API, it does not end there.
Cwalina adds in [11], “The documentation remains criti-
cally important for many users who do take the time to
understand the overall design of the framework up front.
For those users, informative, concise, and complete
documentation is as crucial as self-explanatory object
models.” Chapter 2 of [11] continues to describe how to
name the methods and parameters, and follows that in
Chapter 3, which is dedicated completely to the subject of
names and naming.

When studying design principles to apply to this analy-
sis, it is important to distinguish between design princi-
ples for software reuse and design principles of API us-
ability [11]. Software reuse principles are more appropri-
ate for designing the internal implementation than the
exposed API. The principles and practices described for
each have different goals and they can appear to conflict
with one another if applied in the wrong context. In this
study, only the external interface of the API is studied, not
the internal implementation.

Documentation Principles

There seems to be no disagreement that programmers
like (or expect) to learn an API by using it [11][14]. Paul
Vick in [11] says, “Documentation can help give the ini-
tial idea of what's supposed to happen, but we all know
that you never really learn how something works until
you get down into it and start fiddling around, trying to do
something useful.” My own experience as a software en-
gineer is echoed in [11] and [14], which describe how
programmers first try to learn how an API should work
from the API or from similar APIs they already under-
stand. They check the documentation to correct their as-
sumptions only when the method or function does not
work as they expected. This is also consistent with [11],
which says that the programmers expect the API to tell
them what they need to know so they do not have to look
it up. Thinking of the API as a form of documentation is
also considered in [11], which suggests making “discus-
sion about identifier naming choices a significant part of
specification reviews” and that user education—that is,
the technical writers—be involved early in the API design
process.

While the API itself is the first source of documenta-
tion that a programmer encounters, [14] reinforces the
need for effective reference documentation when it says
that by the time a programmer asks for help, they have
already been unsuccessful with many other sources of
documentation. When programmers are unfortunate
enough to get to that point, according to the study con-

ducted in [14], “99% are mad if they have to ask for
help.”

Looking further into the documentation process, im-
proving consistency also makes the API more usable for
programmers who speak other languages. International
programmers might lack the cultural or linguistic context
to associate several terms to a single context even when
such an association might appear obvious to a native
speaker. Using different terms for the same concept also
increases localization costs, and the resulting documenta-
tion might not be as clear if the translator cannot under-
stand why different terms are used for a single concept.

Case Study
The analysis I applied in this study started with the

goal of learning the API by evaluating its usability from a
documentation perspective. The API design and docu-
mentation principles informed the heuristic I used for the
study. While the design principles and usability dimen-
sions describe more than how an API looks and behaves,
in this study, I limited the scope to only what the pro-
grammers see when they use the API.

Starting with the 12 dimensions for measuring usabil-
ity, consistency was the only one I was in a position to
apply in this study. While all 12 dimensions are worth-
while to consider when designing a new API, much of the
design had already been accomplished by the time I be-
came involved. Consistency, however, is certainly a core
skill of a technical communicator, even if it is a skill [1]
attributes to the support model.

Figure 1 illustrates the analysis process I developed for
this study. The steps in the process are described in the
following text and represent the specific analysis steps I
derived from the principles described in the literature re-
view.

Data Preparation

The goal of this step is to identify and extract all the
API elements of interest for study; however, the source
code files of the API contained over 15,000 lines of pro-
gram code and comments. To analyze the API systemati-
cally, I had to convert the content from the source code to
a more manageable format. To do this, I broke the API
into the elements listed in Table 1 because they are the
first API components that programmers see when they use
the API in their programming.

This API had about 800 interfaces, methods, struc-
tures, and enumerators and over 900 individual parame-
ters to document and study. To document the API, I had
to enter the API components into our XML-based content
management system. Once entered, extracting them from
the content management system required only a small
additional effort.

Figure 1. API analysis process

I formatted the API elements as the XML data ele-
ments listed in Table 1. The resulting XML data file con-
tained one record for each parameter and one additional
record for each method. To analyze the API, I imported
the XML data that contained the API elements as a
spreadsheet into Microsoft Excel 2007. Microsoft Excel
2007 provides the ability to sort and filter the data in an
ad hoc fashion making it well suited for my analysis.

In some sense, this project was a “best-case” scenario
to study because the API was defined in an interface defi-
nition language (IDL) file, which contains a structured
description of the interfaces, methods, and parameters of
the API. API elements are easier to parse and extract from
a structured file than from an unstructured file.

Many of the methods in this API are Get/Set methods,
which get or set the value of an object’s property. To
place those methods together in an alphabetic sort, I cre-
ated a field that contains a normalized version of the
method name. In this field, the “Get” and “Set” substrings
of the method name are moved from the beginning of the

method name to the end. For example, a method named
GetThisProperty would be stored in the normalized field
as ThisProperty (Get). When the data are sorted on this
field, SetThisProperty will follow GetThisProperty im-
mediately as ThisProperty (Get) and ThisProperty (Set)
for easy visual comparison.

Table 1. API analysis data elements.

Element Element Description

Interface name Name of the interface.
Method name Name of method in the interface.
Normalized
method name

For Set/Get methods, the name is
reformatted to move the Set/Get
substring to the end of the string.
All other names are unchanged.

Parameter number Index of parameter: 1 for first
parameter, 2 for second, etc.
0 is used to identify method name
records.

Parameter name Name of parameter. One parame-
ter per data record. Methods with
more than one parameter have
more than one record in file.

Parameter data
type

Data type of parameter.

Tool support can also make the process of extracting
the elements easier. In this case, I used a proprietary tool
to parse the API components of the IDL file into an XML
file defined by a proprietary schema. Doxygen [15] is a
publicly available tool that can also be used to extract the
API elements from definition and header files to an XML
file. Once the elements are in an XML file, an XSL trans-
form can transform the elements into another schema.

API Analysis

The following sections describe the different analyses
that I performed on the API element data after it was col-
lected in the format described in the previous section.

Interface and Method Name Analysis

I used an ad hoc heuristic based on our programming
standard and the naming and design guidelines described
in [6] and [11] to examine the interface and method
names used in the API. Because I studied the API after
the design was essentially complete, I was not in a posi-
tion to recommend any major changes to the organization
of the API; however, I could use my findings to inform
how I would later document the API.

In this study, I observed that some interfaces were
logically related by how they were described in the speci-
fication, but this relationship was not apparent from the
interface names. For example, some interfaces were sub-
ordinate, hierarchically, to others, but the interface names

did not reflect that relationship as [11] suggests. The
names, however, were consistent with what they repre-
sented so they would make sense to programmers once
they understood the nature of the API. By recognizing this
early, I would be sure to describe this relationship when I
wrote the documentation.

Parameter Names and Data Types

In the next analysis steps, I studied the parameter
names and data types. The API in this study was designed
for C++, which is a statically typed language so the data
type tells the programmer a lot about a parameter’s nature
and use. In a statically typed language, a parameter’s data
type can be as informative as the name, if not more so. If
there is a conflict between the parameter name and the
data type, the data type is more credible because the pa-
rameter name is only significant to the programmer
whereas the data type is significant to both the program-
mer and the compiler.

For this part of the analysis, I performed several tests
and asked, “Did the usage implied by the data type agree
with that implied by the name,” and “did the usage im-
plied by the parameter name agree with that implied by
the data type?” Any apparent conflicts might confuse the
programmer, be difficult to explain, or both.

Parameter Name Matches Data Type

I sorted the API elements by the parameter data type
field and then, for each parameter, I compared the pa-
rameter data type to the parameter name, checking to see
if the usage described by the parameter name agreed with
the usage implied by the data type. For generic data types,
such as LONG or DWORD, I checked to see if a more
specific data type might better inform the usage. There
are, however, many times when a generic data type is
expected. For example, when the parameter refers to a
count or an index value, a more specific data type would
be less usable in a programming context. I noted the cases
where the usage was confusing or not obvious so I could
clarify them with the development team.

With the API elements sorted by parameter data type,
it was easy to spot inconsistencies that ultimately might
confuse, if only momentarily, any programmers using the
API. For example, if a data type is used by a parameter in
10 different methods and in 9, the parameters have the
same name, a programmer is likely to assume that the
reason the tenth parameter has a different name is deliber-
ate and significant. The programmer is likely to try to find
the reason for the difference, even of no reason exists. In
my role as an advocate for the API user, I investigated
such cases with the development team to either correct the
different name or to explain why it was different in the
documentation. In a large API that is being developed by
many software developers, it is easy for minor naming
variations to creep in. Applying my tools creatively gave

me a unique view of the API definition—one which made
it easy to catch these inconsistencies quickly and early
enough to correct.

Data Type Matches Parameter Name

This analysis step is very similar to the previous one
and sorts the API elements by the parameter name field to
compare the data types of similarly named parameters. In
the same way that similarly typed parameters should be
checked to see if they are similarly named, similarly
named parameters should most likely, but not always, be
similarly typed. As in the previous step, the naming in-
consistencies that were found were resolved with the de-
velopment team.

Method Name as a Word

Chapter 3 of [11] describes characteristics for method
and parameter name construction that can easily be
checked without an in-depth knowledge of the program-
ming language. For example, [11] suggests that methods
should describe the task they perform, not how they are
implemented, method names that return Boolean values
should be in active voice instead of passive voice, and
parameter names should reflect their meaning or use and
not their data type. Chapter 3 of [11] also suggests that
methods that retrieve or return Boolean parameters should
work grammatically with “if” in front of it. Likewise, the
method should also sound reasonable when negated. For
example, consider the following program code examples:

if (Valid(value)) ...
if !(Valid(value)) ...

These would be read as, “if valid value” and “if not
valid value,” which sound reasonable when read aloud.
The following code examples are functionally the same as
the previous examples but sound more awkward when
read aloud.

if (IsValid(value)) ...
if !(IsValid(value)) ...

The first example in this set would be read as, “if is
valid value,” which, while not as good as the previous set,
is not too bad. The negated version, “if not is valid value,”
is much more awkward. How this analysis is applied to a
specific API depends on the programming and the spoken
languages being analyzed.

Get and Set Balance

Get and Set (or get and put) methods are another group
that can cause confusion when inconsistently named. For
properties that can be written as well as read, the method
names should match after the first three letters. For exam-

ple, if the API has a GetPrompt method and the Prompt
property can also be set, the set method for this property
should be SetPrompt.

The parameter name and data type of related set and
get methods should match within the constraints of the
language. This balance and consistency make it easier for
a programmer to discover both methods when both exist
and not waste time searching for another method should
the property support only one of the two operations (that
is, only Get or only Set).

Presentation of Results
I started this project as a way to become familiar with

a new API and to develop my documentation plan. Sort-
ing and filtering the API elements made it easy to spot the
inconsistencies that I would probably find later as I was
writing the documentation (or maybe not), and I could
find them much earlier in the process. By identifying
problems early, I was able to work with the development
team to either correct them in the design or schedule time
for a more detailed explanation in the help. Fortunately, I
found the inconsistencies early enough in the process for
the development team to fix them.

Sorting the parameters by data type, for example,
makes naming inconsistencies very obvious. To the de-
velopers, the inconsistent names might be physically or
functionally distant in their view of the API, such as in the
10,000-line header file, the specification document, or the
many different source code files in the source code li-
brary. In a sorted list of parameter names, however, the
names line up one after another and the discrepancies
speak for themselves. The development team’s desire for
quality and usability was evidenced by the relatively few
errors I uncovered by this study and the team’s respon-
siveness to my findings. When I presented the develop-
ment team with the relatively few inconsistencies that I
found, they were very concerned and quickly corrected or
explained them.

Discussion
One could argue that it might not be worth the effort to

analyze an API in such an extensive manner if only a few
inconsistencies were found. In fact, the high degree of
overall consistency makes it even more important to per-
form this analysis because programmers will assume, in a
generally consistent API, that any inconsistencies they
find are intentional and meaningful. The programmers
will then waste time trying to find and understand the
(nonexistent) meaning behind the inconsistency. The
technical writer, and advocate for the programmer who
will be using the API, can use the methods presented in
this study to find and eliminate this type of confusion.
The alternative is for the programmer to find them and
have their programming interrupted while they spend time

and trying to find and understand an explanation for the
apparent inconsistency.

This analysis provides a unique view of the API that
makes it easy to find inconsistencies quickly and early
enough in the design process to correct (if unintentional)
or better understand (if intentional) them. The tools and
skills of the technical communicator are uniquely suited
to this type of analysis and can provide direct and tangible
benefit to the design as well as to the documentation.

Reflecting on the process, it followed closely the tac-
tics described in [1]: collaboration, experimentation, ab-
straction, and system. This was a new process, informed
by the usability, design, and documentation principles
outlined in the literature review and expands the bounda-
ries of usability as [1] described under experimentation.
The case study was the collaboration between the devel-
opment team and the technical writer, which was facili-
tated by the results of the analysis. The analysis relied on
an abstraction of the API elements by taking them out of
their normal context as programming elements and con-
sidering them as text elements. Finally, the analysis takes
place in a system perspective that considers the impact an
API as a source of documentation as opposed to simply
programming elements that exist apart from their docu-
mentation.

While it would have been beneficial to be involved
earlier in the design process, this case study occurred un-
der very favorable conditions. I had early access to the
specifications and the IDL files of the source code, a sup-
portive product development team to work with, and rea-
sonable tools support. The absence of any one of these
would have complicated the process.

The content management system in which I author API
documentation stores the content according to an XML
schema. As part of the normal documentation process, I
must code the API elements as elements in the XML
schema. Some of this process can be automated, which
lowers the initial cost of data entry, but I have to enter the
content into the format required by the content manage-
ment system whether I want to perform this analysis or
not. Once the data has been entered to produce the docu-
mentation, converting the API elements from a proprie-
tary XML schema to the format described in the Data
Preparation section above is a matter of writing and ap-
plying an XSL transform on the data in the content man-
agement system. If our help content was based on a dif-
ferent storage model—for example, if the help content
was stored as HTML elements—extracting the API ele-
ments might be more difficult. However, even if it re-
quires additional work at the beginning—for example in
the worst-case scenario where the API elements must be
entered into a spreadsheet by hand—it might still be
worth the effort because of the unique view of the API it
affords. Clearly, an automated solution that is integrated
with the source code and documentation systems would
make the formatting and analysis process more efficient.

With less than 1,000 parameters, this process was
manageable as a single spreadsheet. I am not sure how far
this process would scale up before becoming unwieldy.
At some point, however, the analysis might need to be
subdivided or automated.

Future Work
The heuristic I applied to the text analysis was in-

formed by the literature but was still ad hoc in this case.
The analysis process could benefit from additional re-
search into formalizing the heuristic and then adopting it
as part of the coding and design standards for an API.
With that in place, software developers and technical
communicators could share the same rules for the design
and evaluation of an API.

Going forward, I’d like to continue relocating the
value of technical communication closer to the beginning
of the design; realizing, of course, that the value of each
step must be demonstrated and proven along the way.
Along those lines, I am currently working with the devel-
opment team on ways to repurpose our API reference
documentation further so that it can be used as source
code comments and as the foundation of the final func-
tional specification. This can save the development team
time in that I have to keep the reference documentation
up-to-date in the normal course of my job as a technical
writer. When the development team spends time updating
the specifications during development or after the product
ships, they use time they could spend developing and de-
bugging the current version or designing the next version.
Repurposing single-sourced content can eliminate dupli-
cated effort.

It follows that if I can produce the content for a func-
tional specification from the help content after the product
is complete; it is a short step to using the help content to
produce some of the original specification at the begin-
ning of the product development cycle. Having single-
sourced reference content means the basic reference top-
ics are finished when the functional specification is fin-
ished. Single sourcing the reference topics in this manner
also minimizes overall documentation overhead and de-
veloper workload.

The completed reference topics could also be used to
conduct usability tests on the API earlier in the product
design cycle by using the API reference topics as a type
of paper prototype of a new API [11]. Having the refer-
ence documentation available early in the design process
would make it possible to conduct usability tests sooner,
possibly before any code has been written. This would
make it possible to find usability problems while there
was still time to address them in the design. Having API
reference topics finished before the code also leaves more
time for the technical writers to work on the program-
code examples and sample programs, which are what cus-
tomers really want to see in the help [14].

Acknowledgments
I want to thank Professors Mark Zachry and Jennifer

Turns of the University of Washington’s Human Centered
Design and Engineering department for their support in
this project and the development of this paper. I would
also like to recognize the product development team with
whom I worked on this project. Without their ongoing
support, this project would not have been possible. Fi-
nally, I would like to thank my immediate manager whose
encouragement provides a supportive environment in
which to explore innovative approaches to advancing
technical communication.

References
[1] Johnson-Eilola, J., Relocating the Value of Work: Technical
Communication in a Post-Industrial Age, Technical Communi-
cation Quarterly, Summer 1996, 245-270.

[2] Beck, Kent (2007). Extreme Programming Explained, Sec-
ond Edition. Addison Wesley, Upper Saddle River, NJ.

[3] Reich, Robert B. (1991) The Work of Nations: Preparing
Ourselves for 21st-century Capitalism. Alfred A. Knopf. New
York, NY. Cited in [1].

[4] Arnold, K. (2005). Programmers are people, too. Queue,
3(5), 54-59. doi: 10.1145/1071713.1071731.

[5] Henning, M. (2007). API design matters. Queue, 5(4), 24-36.
doi: 10.1145/1255421.1255422. Also published in (2009) Com-
munications of the ACM, Vol. 52 No. 5, Pages 46-56. doi:
10.1145/1506409.1506424

[6] Green, T., Blandford, A., Church, L., Roast, C., & Clarke, S.
(2006). Cognitive dimensions: Achievements, new directions,
and open questions. Journal of Visual Languages & Computing,
17(4), 328-365. doi: 10.1016/j.jvlc.2006.04.004.

[7] Mayer, Richard E. & Moreno, Roxana (2003). Nine Ways to
Reduce Cognitive Load in Multimedia Learning. Educational
Psychologist, 38 (1), 43-52. Retrieved March 21, 2009, from
http://www.informaworld.com.offcampus.lib.washington.edu/10
.1207/S15326985EP3801_6

[8] Clarke, S. (2004). Measuring API usability [Electronic Ver-
sion]. Dr. Dobb’s Journal Windows/.NET Supplement, May
2004, S6-S9. Retrieved April 26, 2008 from
http://www.ddj.com/windows/184405654

[9] Clarke, S (2005, March 29). HOWTO: Design and run an
API usability study. Retrieved April 26, 2008 from
http://blogs.msdn.com/stevencl/archive/2005/03/29/403436.aspx

[10] McLellan, S., Roesler, A., Tempest, J., & Spinuzzi, C.
(1998). Building more usable APIs. Software, IEEE, 15(3), 78-
86. doi: 10.1109/52.676963.

[11] Cwalina, K., Abrams, B. (2008) Framework Design Guide-
lines: Conventions, Idioms, and Patterns for Reusable .NET
Libraries (Second Edition). Addison-Wesley Professional, Indi-
anapolis, IN.

[12] Maguire, S. (1993) Writing Solid Code. Microsoft Press,
Redmond, WA.

[13] Tulach, J. (2008). How to design a (module) API.
NetBeans, Retrieved April 26, 2008, from
http://openide.netbeans.org/tutorial/apidesign.html

[14] Nykaza, J., Messinger, R., Boehme, F., Norman, C. L.,
Mace, M., & Gordon, M. (2002). What programmers really
want: results of a needs assessment for SDK documentation. In
Proceedings of the 20th annual international conference on
computer documentation (pp. 133-141). Toronto, Ontario, Can-
ada: ACM. Retrieved March 21, 2009, from
http://portal.acm.org.offcampus.lib.washington.edu/citation.cfm
?id=584955.584976&coll=ACM&dl=ACM&CFID=27598684&
CFTOKEN=34478726.

 [15] Heesh, Dimitri van (2009). Doxygen source code docu-
mentation generator tool, Retrieved March 26, 2009, from
http://www.stack.nl/~dimitri/doxygen/

About the Author
I began writing documentation for software developers

as a programmer/writer after 17 years of writing software
for software developers as a software engineer. After a
few years of writing, I returned to the University of
Washington and graduated with a Master of Science in
Human Centered Design and Engineering with a focus on
User-Centered Design. Attending the university while
working as a programmer/writer allowed me to build a
mutually beneficial bridge between industry and acade-
mia—one that I hope to continue to develop.

