

Development and Application of a Heuristic to Assess
Trends in API Documentation

Robert Watson
University of Washington

Seattle, WA
1-206-543-2567

rbwatson@uw.edu

ABSTRACT

Computer technology has made amazing advances in the past few

decades; however, the software documentation of today still looks

strikingly similar to the software documentation used 30 years

ago. If this continues into the 21st century, more and more soft-

ware developers could be using 20th-century-style documentation

to solve 21st-century problems with 21st-century technologies. Is

20th-century-style documentation up to the challenge? How can

that be measured? This paper seeks to answer those questions by

developing a heuristic to identify whether the documentation set

for an application programming interface (API) contains the key

elements of API reference documentation that help software de-

velopers learn an API. The resulting heuristic was tested on a

collection of software documentation that was chosen to provide a

diverse set of examples with which to validate the heuristic. In the

course of testing the heuristic, interesting patterns in the API doc-

umentation were observed. For example, twenty-five percent of

the documentation sets studied did not have any overview infor-

mation, which, according to studies, is one of the most basic ele-

ments an API documentation set needs to help software develop-

ers learn to use the API. The heuristic produced by this research

can be used to evaluate large sets of API documentation, track

trends in API documentation, and facilitate additional research.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—

Software libraries

H.5.2 [Information Systems]: User Interfaces—Training, help,

and documentation; Evaluation/methodology

General Terms

Documentation; Human factors.

Keywords

Application programming interface, API, API reference documen-

tation, Software documentation, Software libraries.

1. INTRODUCTION
Application programming interfaces (APIs) are the interfaces

through which one computer program can access the features or

services provided by another program or software library. The

number of these libraries and APIs is growing rapidly. Microsoft’s

.NET Framework is just one API of the many that Microsoft pro-

duces and it grew from 35,470 members (individual interface

elements of an API) in 2002 to over 109,000 in 2007 and contin-

ues to grow [1]. If you count the work of all the other commercial

independent software vendors (ISVs) and include the independent,

open-source developers who also produce software libraries and

APIs, the number is larger still.

At the same time, the number of software developers who use

these software libraries and APIs is also growing. Whereas in the

past, it was more common to write your own function rather than

use one from a software library [2], the tremendous time-to-

market pressures and the wide variety of software libraries availa-

ble today encourage software developers to use functions provid-

ed by existing software libraries wherever possible. At the same

time, today’s software developers face a dual challenge of keeping

up with the APIs they are familiar with as those APIs evolve and

learning new APIs as they appear in the market, so they can stay

current with the state-of-the-art. These conditions make it im-

portant for documentation to be effective and easy-to-use.

Thirty years ago, the situation was different—software developers

did not have as many software libraries or APIs to choose from

compared to the selection they have today. During the 1980s and

1990s, the personal computer boom fueled an increase in soft-

ware, software libraries, APIs, and also software developers. The-

se were the times that shaped the software documentation format

that is still common today. Yet, clearly much has changed since

then. Today, many more software developers are using many

more software libraries and APIs under very different circum-

stances than existed 30 years ago. We must question, therefore,

whether this documentation format from the 1980s is up to the

demands of 21st-century software development. If it is, how much

longer will these 20th-century formats serve the software develop-

ers of the 21st-century? More to the point, how can we find out

before it is too late?

Unfortunately, it might already be too late. What few studies have

been done in this area indicate that our 1980s documentation

technology might no longer be up to the task and might not have

been for a while. In 2002, Nykaza, et al. [3] published a study

listing items that API documentation should contain. In 2009,

Robillard [4] described how API users of today and tomorrow

need a better way to learn about APIs by concluding: “the way to

foster more efficient API learning experiences is to include more

sophisticated means for developers to identify the information and

the resources they need.” In in their 2010 study of what makes

APIs difficult to learn, Robillard and DeLine identified “inade-

quate API documentation as the most severe obstacle facing de-

velopers learning a new API” [5]. This observation is disappoint-

ing given that software documentation has had over 30 years to

“get it right.” On the other hand, such an observation invites re-

search to find out why and what can be done about it.

This paper reviews the existing research and published literature

in order to identify criteria with which to study and evaluate API

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
SIGDOC’12, October 3–5, 2012, Seattle, Washington, USA.

Copyright 2012 ACM 978-1-4503-1497-8/12/10...$15.00.

295

reference documentation from a user-centered perspective. The

resulting criteria are then used to evaluate a spectrum of API doc-

umentation from the past and present so as to test the criteria and

identify challenges or gaps in their application. A method for

evaluating API reference documentation at a high level in a con-

sistent manner is the result that will enable researchers to study

API reference documentation over time and ultimately improve it

to meet the needs of future software developers.

2. BACKGROUND
The first methodological choice for studying a content set might

seem to be content analysis. While content analysis would identify

and measure elements of a documentation set and be able to track

changes to those elements over time, it would not necessarily

measure the suitability of a documentation set to a specific task or

audience—that is, measure its “fit.” While content analysis will be

more valuable when the documentation is examined in more de-

tail, for a high-level study, a structural analysis of user-centered

requirements is more appropriate for determining the fit between

the user and a product. That is, structural analysis helps one assess

whether a documentation set has the basic structure required to

meet the user’s needs as identified in the literature.

The literature reviewed for this paper is divided into the following

categories: API design and usability, online documentation de-

sign, software developers’ use of documentation, and the applica-

tion of heuristic evaluation.

2.1 API Design and Usability
References discussed here describe the fundamentals of API de-

sign and the factors used to characterize the APIs described in

API reference documentation. API design refers to the design of

the interface, which is related to, but separate from, the design

principles of the software that actually performs a task. Conse-

quently, these references do not necessarily describe how to im-

plement a function with software, just how the interface a soft-

ware developer uses should look and behave. While this paper

focuses on API documentation, the API itself is often the first, and

usually the preferred and most trusted, form of documentation [6].

As such, these design principles form the foundation of the docu-

mentation principles for APIs and they provide a means by which

the design elements can be identified, measured, and compared.

Cwalina and Abrams [6] and Tulach [7] discuss the elements of

an API that comprise sound design practices in object-oriented

programming. Cwalina and Abrams describe design principles

that are intended to provide “consistent functionality that is ap-

propriate for a broad range of developers.” They encourage a

user-centered, scenario-driven approach to designing frameworks

or software libraries. While Cwalina and Abrams describe their

principles in the context of Microsoft’s .NET Framework, many

of their recommendations also apply or can be adapted to other

programming environments. Tulach offers a similar design guide

for software developers who create software libraries and APIs in

Java, and, like Cwalina and Abrams, Tulach encourages user-

centered, scenario-driven design methods.

Bloch [8] and Henning [2] discuss specifically why usability is

important to consider in API design and they describe the conse-

quences of what happens when APIs have usability problems.

Bloch lists several characteristics of a good API including “Easy

to learn” and “Easy to use, even without documentation” and

advocates a user-centered, scenario-driven approach [8]. Henning

[2] cites examples of APIs that are difficult to use successfully

and easy to use in a way that reduces the program’s performance

and reliability. The APIs that Henning describes are designed in a

way that is contrary to what Rico Mariani described as making it

easy to use the API correctly and to “make it hard to do things the

wrong way” [6].

Arnold [9] and Clarke [10] encourage a user-centered approach to

API design by looking at the API design problem from the per-

spectives of human factors and usability. Arnold describes some

examples of applying the user-centered design principles of un-

derstanding the audience and using progressive disclosure and

Clarke describes how to characterize an API and its users along

12 different cognitive dimensions.

2.2 Software Developer’s Documentation Use
One of the key tenets of technical writing is to know your audi-

ence and to write for them [11, 12]; however, this is complicated

when the audience has diverse information-seeking goals and

methods. Clarke [10] describes three groups of software develop-

ers, each with a different approach to software development and a

different learning style. The three groups are opportunistic, prag-

matic, and systematic [13].

Nykaza et al. [3] studied a software installation and observed how

developers felt about the documentation. They listed eight ways to

reduce the learning curve of an API and seven things to include in

the content of a software development kit (SDK, usually a collec-

tion of software libraries, documentation, and tools necessary to

include the features of third-party software into a program), and

six ways to present the content. Their study, however, is now over

ten years old, so some of their suggestions are now less popular,

such as providing printed documentation. At the same time, stud-

ies that are more recent still arrive at many of the same conclu-

sions.

Robillard [4] surveyed 80 software developers at Microsoft to

identify the challenges they experienced learning new APIs.

Robillard and DeLine [5] followed this with a more in-depth anal-

ysis to identify five dimensions of obstacles to learning an API:

intent documentation, code examples, matching APIs with scenar-

ios, penetrability, and documentation format. From their research,

they derive seven implications of what software developers need

in their documentation.

Rouet’s TRACE model of document processing [14] is a task-

oriented model of document search and information retrieval that

is well suited to examining the just-in-time type of information

retrieval that is frequently used by consumers of API documenta-

tion [13]. Rouet’s model is a more detailed version of Wright’s

document interaction model [15, 16] as referenced by Nielsen:

searching, understanding, and applying [17].

2.3 Online Documentation Design
Web content design in general has received a lot of attention;

however, it is challenging to find a succinct resource that address-

es the design patterns necessary to support a software developer’s

information-seeking needs. Redish [12] describes online docu-

ment design for the user who “skims and scans.” She goes on to

describe some of the key design elements for this type of audience

such as home pages, pathway pages, and how much content to

include on a content page, elements that agree with Robillard and

DeLine’s [5] findings about API documentation.

Video is becoming more popular as a medium for online instruc-

tion and studies have shown that video tutorials can help users

learn technical topics [18, 19, 20]. However, it is unclear how

video and other new media formats can help software developers

learn about an API.

296

2.4 Heuristic Evaluation of Web content
Nielsen [17] describes using heuristic evaluation as “a systematic

inspection of a user interface design for usability” and a “discount

usability engineering” method. The application of the heuristic

studied in this paper is consistent with Nielsen’s description of

heuristic evaluation.

3. METHOD
A user-centered heuristic was derived from the published litera-

ture to study the structure of a documentation set at a high level.

The resulting heuristic was tested by two coders who used it to

evaluate a variety of API documentation sets.

The primary task context of the heuristic consists of the searching

and understanding [17] stages of online documentation use while

using API reference documentation to learn a new API. API refer-

ence documentation might have many other uses that could bene-

fit from different heuristics, if not completely different methodol-

ogies, but they are outside the scope of this paper.

In the context of searching and understanding, readers can be

divided into two groups: new readers who have not seen the site

before and returning readers who have. The heuristic assumes a

new reader of the documentation for several reasons. First, new

readers are the more demanding of the two groups. Second, be-

cause software developers are unlikely to return to the same sec-

tion of API reference documentation frequently, many characteris-

tics of new readers apply to returning readers in this context.

While it is true that returning readers might be familiar with the

nature of the API when they return to the documentation, they are

likely to reacquaint themselves with the site’s organization if it

has been a while since their last visit. In that case, the returning

readers will need to search and find the information like new

readers.

Additionally, the heuristic focuses only on learning to use a new

API. It assumes that readers come to the documentation with a

sufficient understanding of how to write a program in the context

of their task and need only to learn about the features of the soft-

ware library being studied.

One complication of a user-centered heuristic in this scenario is

characterizing the user sufficiently. Software developers span a

wide range of learning and programming styles and the software

they use spans an equally diverse range of intended software de-

velopment styles. The supporting literature [3, 4, 5, 12, 14], how-

ever, studied a wide range of audiences and learning styles, so the

elements of the heuristic that results from this literature should

also apply to a similarly diverse set of audiences.

3.1 Heuristic Used
The heuristic used to examine an API’s documentation is based on

Rouet’s TRACE mode of information seeking [14], Redish’s

characterization of web document usage [12], and Robillard and

DeLine’s lists of what software developers need in API documen-

tation [5]. Figure 1 lists the elements of the heuristic.

The heuristic has three categories: the initial impression, the expe-

rience of using the documentation, and additional data. Together,

these categories correspond to the select document, process con-

tent, and document relevance steps in the TRACE model and

“information foraging” described by Redish [12]. The factors of

the initial impression describe the elements a reader would use to

evaluate the nature of the site to determine if it warrants further

investigation. The experience factors evaluate the elements of the

documentation that affect the reader’s experience after he or she

decides to explore the site, and the additional data are used to

collect information about the site and its evaluation.

3.1.1 Initial impression
The initial impression of the documentation was evaluated by

observing the following elements: the entry page content and the

presence of overview information.

Figure 1. Summary of heuristic elements

The entry page is the page seen at the top of the documentation

content hierarchy. Typically, this is the page that the reader sees

when he or she clicks a “documentation” link on the product’s

home page or it is one of the first links returned in a search for the

API’s documentation. This page acts as a home page for the API

or the API documentation in the context of Redish [12], but it is

called an entry page in this context to avoid confusion with the

cases where it is different from the site’s overall home page. The

content of the entry page is a key element that a reader uses to

determine the relevance of the page to his or her search and

whether the site is worth exploring further. In this paper, the in-

formation elements found on the entry page were described by the

coders and reviewed after all the sites had been studied.

Overview information explains the purpose or application of the

API at a high level in a single page. The overview information

helps characterize the intent documentation [5] that software de-

velopers need to orient themselves in the API. Ideally, the docu-

mentation contains an overview topic, which provides information

about the scenarios for which the API was designed [3, 5]. In

some cases, the entry page contains this content, while in others,

this information was found on another page. In the cases where

the overview information was not in the entry page, the coders

used the navigational affordances of the entry page to find the

overview information. If overview or intent information could not

be found, this element was coded as not present.

3.1.2 Experience
The experience of using the documentation was evaluated by

identifying the following design elements: top-level navigation

type, reference topic format, and the availability and type of code

examples. The navigation style and reference-topic design ele-

ments directly characterize the documentation set’s hyperlinking

structure and how a reader navigates the content, which relates to

how a reader maintains his or her orientation in the content [5].

The top-level navigation type used by the site describes the navi-

gation affordances the site offers to the reader for navigating

among the topics in the documentation. The sites studied used one

Initial impression

 Entry page content

 Overview information

Experience

 Top-level navigation type

 Reference topic format

 Code examples

o Code snippets

o Tutorials

o Sample apps

Additional data

 Advanced pages

 Video tutorials

 Comments

297

of two different navigation styles and were coded as either hub-

and-spoke or menu-content.

In the hub-and-spoke model, one central table-of-contents linked

all other documentation. In the cases where there was no specific

table of contents, this attribute was assigned if the interaction

resembled such a structure, as would be the case in a breadcrumb-

only navigation style, for example.

In the menu-content model, the pages were divided into a menu

portion and a content portion—usually with the menu displayed in

a narrow column the left side of the page—and the content that

corresponds to the reader’s menu selection displayed in a larger

area to the right of the menu.

With regard to maintaining orientation in the document set, the

hub-and-spoke model provides a view of the content that is lim-

ited to the current node and its sub nodes in the documentation’s

hierarchy, while the menu-content model generally offers a con-

text that includes more levels of the hierarchy. For simple topics

and small APIs, the view of the content offered by the hub-and-

spoke model can be sufficient. In larger and more complex APIs,

however, the menu-content model provides an organizational

framework for the reader.

The reference topic format describes how the documentation of

individual API elements is presented on the page. The API refer-

ence content could be presented as individual topics in the single-

element-per-page format or as a group of elements that relate to a

single object or other high-level concept in the multiple-element-

per-page format.

API reference documentation usually contains a description of an

element (where an element is an individual programming compo-

nent provided by the software library, such as an object, class,

interface, method, function, or data structure) and its parameters.

These descriptions can vary in detail from simply showing the

prototype or definition of the element to presenting extensively

detailed descriptions of the element, including boundary cases,

error returns, and other information that could be useful to the

software developer. The detail an API element description re-

quires depends on the element and its intended audience. Studying

the contents of an API element description requires a more de-

tailed examination and so they are not included in this analysis.

Code examples are an important aspect of API reference docu-

mentation [3, 5]. Robillard and DeLine [5] categorize code exam-

ples by size and complexity as code snippets, tutorials, sample

applications, and production code. The first three categories can

be found in published API documentation, while the fourth is

usually available only to software developers who have access to

the software library’s source code. This looks only for code snip-

pets, tutorials, and sample apps. For production code, the user of

an open-source software library is presumed to have access to the

source code behind the API, while the users of commercial soft-

ware libraries are presumed not to have access to the software

library’s source code.

Code snippets were measured by reviewing the API reference

topics to see if they included short samples of code that illustrated

how that element was used. If code snippets were easily or fre-

quently found in the documentation’s topics, this value was coded

as “present.” If they were infrequent or could not be found in the

reference topics, the value was coded as “not-present.”

Tutorials, while not specifically part of API reference documenta-

tion, are important tools that help software developers understand

how to use an API element or group of elements in a program-

ming context. Software developers also use tutorials as a source

from which to copy program code that they include into their own

program’s [5]. If tutorials could be found easily from the entry

page or overview information, this value was coded as “present.”

If tutorials could not be found easily, the value was coded as “not

present.” The quality of the tutorials, such as their detail or

breadth of coverage was not evaluated.

Software developers also use sample apps to understand how to

use the elements of an API in context and as another source from

which to copy program code [5]. Where a tutorial typically will

focus on a single feature or a set of related features, a sample app

is a complete application that includes examples of the API as

well as the other functions that comprise a complete program,

such as display, data input/output, and error handling.

3.1.3 Additional data
In addition to the initial impression and experience data, the cod-

ers recorded the presence of these additional documentation ele-

ments to help characterize their experience with the documenta-

tion: advanced pages, video tutorials, and coder comments. These

elements were selected to record the use of new media and tech-

nologies in API reference documentation.

Advanced pages are reference topics that allow user interaction. In

contrast, a basic page uses only HTML and CSS to display con-

tent that consists of images, text, or HTML samples. Animation

examples were considered basic pages unless the reader could

interact with them. Advanced pages would be pages that con-

tained elements that were more interactive or dynamic than basic

pages. As an example, the HTML5 <audio> Tag page on the

W3Schools.com site [21] would be considered an advanced page

because it allows the reader to interact with the code example.

Only API reference pages were considered when coding this field.

Interactive tutorials or demonstration programs were not consid-

ered when coding this field.

Video tutorials were scored as “present” if video explanations

about how to use the API were easily found from the entry page,

overview topic, or a reference page. A video would only count if

it was a narrated video clip that explained or demonstrated some

aspect of the API.

The coders also recorded any Comments about the site as they

reviewed the documentation.

3.2 API Documentation Studied
The goal was to develop a heuristic that can used to evaluate API

documentation. To test the resulting heuristic, a collection of API

documentation was selected for its variety in terms of API size,

API source, the size of the entity that produced the API, the tech-

nology for which the API was developed, and the intended use of

the API. The goal of testing the heuristic on a diverse collection of

API documentation was to increase the likelihood of finding any

problems with the heuristic or its application. If the heuristic

proves to be valid, it could provide interesting and useful infor-

mation about the sites used to test it. The intentional diversity of

the APIs selected for this test also provides some insight into the

current state of API documentation, even if the sample is not a

statistically valid random sample that could be generalized to a

larger population.

Table 1 lists the 43 software libraries that were identified to pro-

vide the desired diversity. Eight of these libraries (as indicated by

an asterisk in Table 1) could not be studied for various reasons

such as an inability to locate the documentation or the library did

not have a conventional API. In one case, for example, a library

provided a template interface and was documented more like a

programming language than an API that was documented in the

298

context of a programming language. The 35 software libraries that

were studied with this heuristic supported technologies and lan-

guages such as C/C++, Java, JavaScript, PHP, Ruby, Ruby on

Rails, and VAX/VMS. Of the software libraries, 29 were for a

web technology, while 6 were intended for native or client soft-

ware. Open-source software libraries made up 28 of the software

libraries studied and 7 software libraries came from commercial

independent software vendors (ISVs). The 1:4 ratio of commercial

to open-source software libraries could be misleading, however.

Some of the commercial libraries studied are individual libraries

from commercial vendors who offer hundreds of similarly orga-

nized and authored libraries with a cumulative total of many thou-

sands of API objects and elements. Therefore, the commercial

libraries studied represent a much larger volume of API documen-

tation topics than their numbers might otherwise indicate.

Table 1. APIs selected to test the heuristic

Amazon SES express* knockout.js Rails

ARM 4.0 fixtext* lettering.js* Raphaël

Backbone Google

MAPS

minitest require.js

batik guard* Mocha rspec

boost Hadoop mustache.js* sinon.js

Cake PHP handlebars.js* node.js Underscore

CodeIgniter Infovis OpenVMS

RTL

Microsoft

Windows

Documents

& Printing

d3.js Jasmine paper.js wire.js

Devise Java 2 Plat-

form Ent. Ed.

V 1.4

phantom.js WordPress

Drupal JQuery Processing* YUI

ember.js* JQueryUI protovis

* These APIs could not be studied.

The libraries sizes were measured by estimating the number of

high-level objects they provided in the API. These could be ob-

jects or classes, in the case of object-oriented APIs, or functions,

in the case of procedural APIs. Table 2 shows the size of the li-

braries used to test this heuristic.

Table 2. Software library size

Size API Objects

Total Count of

Libraries

Studied

Open Source

Libraries

Huge > 1000 4 1

Large 100-999 10 8

Med 10-99 15 14

Small < 10 6 5

3.3 Documentation Aspects Not Studied
The heuristic is intended to identify elements of an API documen-

tation set along several key dimensions of utility to software de-

velopers as identified in the literature. It is designed to identify

those API documentation sets that might make the APIs they doc-

ument harder to learn, but this heuristic does not examine API

documentation content at a detailed level. While a detailed heuris-

tic would be a valuable tool, it is outside the scope of this paper.

This heuristic identifies whether an API documentation set con-

tains some of the aspects of API documentation that Robillard and

DeLine [5], Nykaza, et al. [3], and others list as helpful to soft-

ware developers learning an API, specifically, intent documenta-

tion and penetrability; however, it does not evaluate the quality of

those elements.

While the usability of an API affects how a software developer

learns it and what sort of documentation is required [4], this heu-

ristic does not measure the usability or suitability of the API doc-

umentation to any particular learning style or application. The

purpose of this heuristic is to study the presence or absence of

documentation elements to answer the question, “does the API

documentation contain the elements that help a software develop-

er learn an API?”

3.4 Coding
Two experienced, professional software developers applied the

heuristic to the 35 APIs that could be studied. At least one of the

software developers studied each API and 15% of the results were

selected at random to review for coding errors. A total of 11 cod-

ing errors were found out of 286 values coded, for an error rate of

4%. The coding errors were corrected and recoded before the data

were analyzed.

4. FINDINGS
This section reports the observations of using the heuristic tool

and of the data collected by using the heuristic.

4.1 Using the Heuristic
The heuristic was applied to a wide range of software libraries and

API documentation styles with few coding errors. Most of the

coding errors reported above resulted from having insufficiently

precise operational definitions of some of the categories. For ex-

ample, the “Video tutorial” category was intended to identify

videos of people explaining or demonstrating a topic to the view-

er. The original definition of this category, however, was worded

such that it could be interpreted as any tutorial that included some

video content. The documentation for a graphics library, however,

included in its tutorials animated elements that demonstrated ani-

mation functions of the library. These elements were originally

coded as video tutorials. However, because they did not have any

presenter, they were subsequently recoded and the definition was

made more specific.

Because this heuristic looks only for specific elements of a docu-

mentation set, evaluating an API documentation set is relatively

quick. Coders reported spending about 10 minutes to evaluate

each documentation set. The variety of documentation styles,

however, provided examples that did not cleanly fit the categories

described by the heuristic. For example, wiki-based documenta-

tion offered a variety of navigation styles. Some examples re-

tained a menu, while others relied on a breadcrumb trail to show

the reader where they were in the documentation. Having a bread-

crumb trail alone made it difficult to maintain orientation, which

is one of the problems of hypertext documentation identified by

Robillard and DeLine [5].

Except for the criteria definitions that needed refinement, the heu-

ristic seemed easy to use and apply consistently.

4.2 Data Collected by the Heuristic
In the course of applying the heuristic across the different sets of

API documentation, an interesting view of the API documentation

landscape emerged.

299

4.2.1 Document elements
Figure 2 shows the presence of the elements that help software

developers learn an API. Overview information was found in 27

of the API documentation sets evaluated and code snippets were

included in the reference topics of 22 of the 35 API documenta-

tion sets evaluated. Tutorials and sample apps were less common

in this collection of documentation and most sites studied used

basic pages for their reference topics with only six documentation

sets using advanced pages. Even fewer documentation sets used

video tutorials.

Figure 2. Document elements found in the API documentation

studied

Figure 3 shows the elements found in the entry pages of the API

documentation sites studied. The entry pages studied included

such content as value propositions, which could serve as intent

documentation, getting started topics, links to tutorials and the

API reference, tables of contents, and in the case of a small API,

the entire documentation set. Of the 35 sites studied, 12 had value

propositions on their entry pages, 14 had a table-of-contents to

their documentation, and 9 had getting started topics or links to

getting started topics.

Figure 3. Entry page contents

4.2.2 Navigation elements
The navigation model and the reference-topic page format de-

scribe the site’s affordances for document navigation. Figure 4

shows that the multiple-element-per-page format was the most

common format seen in the documentation studied, by a factor of

about 3 to 1. The multiple-element-per-page topic model includes

on a single page all the content that relates to a high-level object

such as a class, interface, or object.

Figure 4. Reference topic format by API size

However, Figure 5 shows that the preference for reference-topic

page format within documentation studied varies with API size.

The larger APIs favored the simpler, single-topic-per-element

page format, where each topic page described only one single

element of an API, for example, a method, function, or structure.

Smaller APIs, on the other hand were more likely to have pages in

the multiple-element-per-page format, where the related elements

are all on a single page.

Figure 5. Reference topic format distribution by API size

Figure 6 shows that the menu-content style of navigation was

twice as popular as the hub-and-spoke style in this collection.

However, Figure 7 shows that unlike the reference topic format,

the navigation model preference did not change significantly with

the size of the API.

Figure 6. Navigation model by API size

300

Figure 7. Navigation model distribution by API size

5. DISCUSSION
The goal of this project was to develop and test a heuristic for

evaluating API documentation. The heuristic developed seemed

easy to apply and accurately describes a documentation set in

terms of having the high-level documentation elements that soft-

ware developers need to learn an API. Because the heuristic tests

for only the high-level elements of a documentation set, it is more

useful to characterize a collection of API documentation than a

single documentation set. Using this heuristic to survey a collec-

tion of APIs, such as those described in this paper, provides a

high-level view of how that collection of documentation addresses

the documentation needs commonly expressed by software devel-

opers [5].

Studying this collection of API documentation provides some

interesting insights in API documentation that might warrant fur-

ther investigation. For example, while video tutorials are useful

and effective in teaching technical topics, very few of the API

documentation sets studied included them. Somewhat more com-

mon than videos, but still found in less than half of the sites stud-

ied are the elements most desired by developers in Robillard and

DeLine’s [5] study: tutorials and sample apps.

Code snippets and overview information were the most common

documentation elements found in the sites studied; however,

eight, almost 25% of the sites studied, did not have any overview

information. This is surprising considering that overview infor-

mation is some of the easiest content to write and offers the much

needed orientation and intent information for the API. In one ex-

ample without an overview, the documentation appeared to as-

sume the reader understood the overview and intent by going right

into applications and examples. In another, it appeared that the

overview was divided into sub-overviews that did not seem to

relate directly to the API documentation reviewed. This particular

API was huge so it is possible that the overview was elsewhere in

the documentation. However, even if that was the case, it still

seems risky to assume the reader will always know how to find

the overview content without an affordance in the reference con-

tent.

Additional aspects of API documentation were also encountered

while testing the heuristic. For example, some API documentation

could not be found by online searches due to name collisions. One

API had a name that was descriptive to a fault. Its name described

its function by using a term that matched a common industry term.

As a result, the search results contained mostly references to the

term in its industry context, not the API’s. As a result, the docu-

mentation was not found and so it could not be included in the

APIs studied. Another aspect that was not coded by this heuristic

was the usability of the site from the perspective of the coder. In

the comments, some sites were noted as being easy to navigate

while others were extremely difficult. These observations might

be worthy to model and note in a future revision of this heuristic,

but they were not modeled in this heuristic.

6. CONCLUSIONS AND FUTURE WORK
Good API documentation begins with the API and extends into

the online documentation [6, 8]. Heuristics have been applied to

measure the usability of an API [10] but not to the API’s docu-

mentation. This heuristic is a step towards being able to measure

the usability and suitability of API documentation sets for soft-

ware developers and their tasks. It can also be used to study large

collections of APIs over time to track trends.

Some of the directions that future research could take include

going broader and deeper. Going broader, the heuristic could be

applied to larger or targeted sets of APIs to generalize the nature

of those APIs. Going deeper, new heuristics could be developed to

study the documentation elements in detail to evaluate their usa-

bility and effectiveness. Other measures to evaluate include how

easy the site is to find through search, how easy the site is to navi-

gate, and the user’s satisfaction with the site.

While the literature reviewed describes what software developers

would like to see in API documentation, it is unclear that having

those elements actually improves a software developer’s learning

experience, satisfaction, or ability to complete a programming

task. Starting with the elements identified by this heuristic, exper-

iments could be designed to test an API’s effectiveness in specific

scenarios. For example, two types of reference topic formats are

described in this paper: multiple-element per page and a single-

element per page. While the multiple-element per page format

was more common, it is unclear whether what format makes it

easier for a software developer to learn an API. With specific

elements and scenarios defined, experiments could be designed to

test the performance of the different elements in those scenarios.

7. ACKNOWLEDGEMENTS
I would like to thank Dr. Jan Spyridakis and her Internet-Based

User-Experience Lab in the University of Washington’s Depart-

ment of Human Centered Design & Engineering for their help in

collect and coding this data.

8. REFERENCES
[1] Abrams, B. 2008. Number of Types in the .NET Framework.

17 March 2008. [Online]. Available:

http://blogs.msdn.com/b/brada/archive/2008/03/17/number-

of-types-in-the-net-framework.aspx. [Accessed 23 January

2010].

[2] Henning, M. 2007. API design matters. ACM Queue. pp. 24-

36, May/June 2007.

[3] Nykaza, J., Messinger, R., Boehme, F., Norman, C., Mace,

M. and Gordon, M. 2002. What programmers really want:

Results of a needs assessment for SDK documentation. In

Proceedings of the 20th Annual International Conference on

Computer Documentation (Toronto, Ontario, Canada, 2002).

[4] Robillard, M. P. 2009. What makes APIs hard to learn? An-

swers from developers. Software, IEEE. vol. 26, no. 6, pp.

27-34 (November/December 2009).

[5] Robillard, M. P. and DeLine, R. 2011. A field study of API

learning obstacles. Empirical Software Engineering. pp. 703-

732 (2011).

301

[6] Cwalina K. and Abrams, B. 2009. Framework Design Guide-

lines: Conventions, Idioms, and Patterns for Reusable .NET

Libraries. Indianapolis, IN: Addison Wesley.

[7] Tulach, J. 2008. How to Design a (Module) API. [Online].

Available:

http://openide.netbeans.org/tutorial/apidesign.html. [Ac-

cessed 26 April 2008].

[8] Bloch, J. 2005. How to Design a Good API and why it Mat-

ters. 19 October 2005. Available:

http://lcsd05.cs.tamu.edu/slides/keynote.pdf [Accessed 27

January 2010].

[9] Arnold, K. 2005. Programmers are people, too. ACM Queue,

pp. 55-59 (June 2005).

[10] Clarke, S. 2004. Measuring API usability. Dr. Dobbs Journal

Special Windows/.NET Supplement. pp. S6-S9 (May 2004).

[11] Markel, M. 2007. Technical Communication, 8th ed., Boston,

MA. Bedford/St. Martin's.

[12] Redish, J. 2007. Letting Go of the Words: Writing Web Con-

tent that Works. San Francisco, CA: Morgan Kaufmann Pub-

lishers.

[13] Clarke, S. 2003. Using the Cognitive Dimensions, Continued

- Learning Style 24 Nov 2003. Available:

http://blogs.msdn.com/stevencl/archive/2003/11/24/57079.as

px. [Accessed 2 February 2010].

[14] Rouet, J. F. 2006. The Skills of Document Use: From Text

Comprehension to Web-Based Learning, Mahweh, NJ: Law-

rence Erlbaum Associates.

[15] Wright, P. 1983. Manual dexterity: A user-oriented approach

to creating computer documentation. In Proc. ACM CHI '83

Conf. (Boston, MA, 1983).

[16] Wright, P. 1991. Designing and evaluating documentation

for I.T. users. In Human Factors for Informatics Usability.

Shackel, B. and Richardson S., Eds., Cambridge, Cambridge

University Press, pp. 343-358.

[17] Nielsen, J. 1993. Usability Engineering, Boston, MA: Aca-

demic Press.

[18] Bowles, T. M., Hensley M. K. and Hinchliffe, L. J. 2010.

Best practices for online video tutorials: A study of student

preferences and understanding. Communications in Infor-

mation Literacy. vol. 4, no. 1, pp. 17-28 (2010).

[19] DeVaney, T. A. 2009. Impact of Video Tutorials in an Online

Educational Statistics Courses, Dec. 2009. [Online]. Availa-

ble: http://jolt.merlot.org/vol5no4/devaney_1209.htm. [Ac-

cessed 30 May 2012].

[20] Bridge, P. D., Jackson, M. and Robinson, L. 2009. The effec-

tiveness of streaming video on medical student learning: A

case study. Wayne State University School of Medicine. 19

August 2009. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779626/pdf/

MEO-14-RES00311.pdf. [Accessed 30 May 2012].

[21] W3Schools. 2012. HTML5 <audio> Tag. [Online]. Availa-

ble: http://www.w3schools.com/html5/tag_audio.asp. [Ac-

cessed 30 May 2012].

9. ABOUT THE AUTHOR
Robert Watson developed software professionally for 17 years.

After writing software for many products and designing many

APIs, he stopped writing software and started writing about soft-

ware as a programming writer at Microsoft. As a programming

writer, he has been writing about software for software developers

for almost 10 years. He holds a Master of Science degree in Hu-

man Centered Design and Engineering from the University of

Washington with a focus on user-centered design and is currently

studying for a PhD in Human Centered Design & Engineering and

Global Technical & Communication Management.

302

	1. INTRODUCTION
	2. BACKGROUND
	2.1 API Design and Usability
	2.2 Software Developer’s Documentation Use
	2.3 Online Documentation Design
	2.4 Heuristic Evaluation of Web content

	3. METHOD
	3.1 Heuristic Used
	3.1.1 Initial impression
	3.1.2 Experience
	3.1.3 Additional data

	3.2 API Documentation Studied
	3.3 Documentation Aspects Not Studied
	3.4 Coding

	4. FINDINGS
	4.1 Using the Heuristic
	4.2 Data Collected by the Heuristic
	4.2.1 Document elements
	4.2.2 Navigation elements

	5. DISCUSSION
	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEDGEMENTS
	8. REFERENCES
	9. ABOUT THE AUTHOR

