

API Documentation and Software Community Values:
A Survey of Open-Source API Documentation

Robert Watson Mark Stamnes
Jacob Jeannot-

Schroeder Jan H. Spyridakis
Department of Human-Centered Design & Engineering

University of Washington
Campus Box 352315, Seattle, WA 98195

01.206.685-1557
[rbwatson | mstamnes | jjs5 | jansp]@uw.edu

ABSTRACT
Studies of what software developers need from API documenta-
tion have reported consistent findings over the years; however,
these studies all used similar methods—usually a form of observa-
tion or survey. Our study looks at API documentation as artifacts
of the open-source software communities who produce them to
study how documentation produced by the communities who use
the software compares to past studies of what software developers
want and need from API documentation. We reviewed API docu-
mentation from 33 of the most popular open-source software pro-
jects, assessed their documentation elements, and evaluated the
quality of their visual design and writing. We found that the doc-
umentation we studied included most or all the documentation
elements reported as desirable in earlier studies and in the process,
we found that the design and writing quality of many documenta-
tion sets received considerable attention. Our findings reinforce
the API requirements identified in the literature and suggest that
the design and writing quality of the documentation are also criti-
cal API documentation requirements that warrant further study.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Training, help, and documentation

Keywords
API, API reference documentation, Application programming
interface, Software documentation, Software libraries

1. INTRODUCTION
Application-programming interfaces (APIs) allow one program or
web site to access the data and services provided by another pro-
gram or website. APIs make programming easier by sharing code
and enabling software reuse, and they are multiplying. Microsoft’s
.NET Framework grew from 35,470 API elements in 2002 to over
109,000 API elements in 2007 [1]. Since that report, Microsoft
added several thousand API elements with Windows 8. Each
month for the past few years, hundreds of APIs have also been

added to the Programmable Web, a site that catalogs web-service
APIs [2]. Each new API includes new features, which software
developers must learn and apply quickly and correctly. This rapid
growth shows no sign of abating, and the demand for increasingly
short time-to-market puts tremendous pressure on today’s soft-
ware developers to learn and apply these new APIs.

While the surveys and interviews conducted in past studies
of API-documentation requirements paint a consistent picture,
recent studies suggest that API documentation might not provide
software developers with what they need. One study found “that
some of the most severe obstacles faced by developers learning
new APIs pertained to the documentation and other learning re-
sources” [3]. Lethbridge et al. [4] reported that documentation
was “often poorly written” and “finding useful content in docu-
mentation can be so challenging that people might not try to do
so.” They found that “inline comments [in the source code] are
often good enough to greatly assist detailed maintenance work.”
Another researcher described how API documentation was so bad
that “developers may be getting as much as 50% of their docu-
mentation from Stack Overflow” (a web site that hosts questions
and answers about software development) [5]. Looking deeper
into these studies and reports reveals the diverse and complex
nature of API documentation and its study.

To consider a different perspective from that of the past stud-
ies and to add some context to the recent observations, we look at
what software development communities put into the API docu-
mentation they produce for themselves. We asked the research
question: do software development communities create documen-
tation that contains, at a macro level, the documentation elements
software developers have said they want in earlier literature?

Past studies applied research methods in which the partici-
pants knew they were involved in the research and all produced
very similar findings. Our study looks at the question from a dif-
ferent perspective, allowing us to triangulate the findings of past
studies. In our study, we examine the documentation produced by
the open-source software communities as artifacts of what devel-
opers value.

Open-source software is developed and supported by a com-
munity of individuals who create, use, and maintain the software
and documentation. Therefore, the software and the documenta-
tion we find in open-source communities should represent what
they value—that is, the members of a software community will
tend to write only what they find valuable or useful (be it software
or documentation). Because the community that forms around any
individual piece of software is specific to that software, we stud-
ied a group of open-source software to obtain a more generalized
sense of open-source software documentation.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from per-
missions@acm.org.
SIGDOC’13, September 30–October 1, 2013, Greenville, North Carolina, USA.
Copyright © 2013 ACM 978-1-4503-2131-0/13/09…$15.00.
http://dx.doi.org/10.1145/2507065.2507076

2. BACKGROUND
Our study draws on past research in which software developers
were observed, surveyed, and interviewed to identify the aspects
of software documentation they need to do their job, or whose
absence complicates it. From this research, we summarized the
requirements of API documentation and evaluated the API docu-
mentation of open-source software.

2.1 Past Studies of Software Developers
Our list of elements that software developers require from docu-
mentation comes from past studies of software developers. Nyka-
za et al. [6] studied the installation of a customer-service call cen-
ter and interviewed the software developers who used the sys-
tem’s SDK to write the software that adapted the system to the
installation. Lethbridge et al. [4] studied software documentation
used to maintain the software, as opposed to apply the software in
another application. The scenario in Lethbridge et al. differs from
that of API documentation written for an external audience in
terms of purpose and audience, but includes many of the same
requirements of API documentation for learning an API. Robillard
surveyed [7] and later interviewed [3] a group of Microsoft soft-
ware engineers to identify obstacles to learning a new API. Sillito
and Begel [8] interviewed software developers at Microsoft about
how they learned to develop software on a new software platform.
Each of these studies listed some or all of the following API doc-
umentation elements as helpful or critical to learning an API.

� Overview documentation.
� Short code “snippets” that demonstrate usage of an API

in context.
� Code examples that show best practices with an API.
� Scenario and task-based documentation.
� Limitations and error handling.
� Meaningful documentation (as opposed to “filler” or

“boilerplate” content that adds little or no value to what
is obvious).

Other studies of computer users, users who were not neces-
sarily software developers per se, relate similar requirements of
documentation [9] [10].

� Accuracy, completeness, and correctness.
� Scenario and task-focused examples.
� Content that does not repeat the obvious, such as what

can be learned from the user interface.

Because software developers are computer users, we also
considered those documentation requirements in our study.

2.2 Open-Source Software and Developers
A variety of research has focused on the motivations of software
developers who contribute to open source software [13, 17, 18,
19, 20, 21, 22]. Hertel et al. [18] present high-level descriptions of
their motivations, citing norm-oriented motives, pragmatic mo-
tives, hedonistic motives, and social/political motives, among
others. Hars and Ou [17], drawing from psychological theories,
distinguish between internal factors and external factors as moti-
vations for contributing to open source projects. Internal factors
include intrinsic motivation, referring to an “…innate desire to
code,” as well as altruistic motivations, and a sense of community
identification. External factors include future rewards or the satis-
faction of personal needs. Future rewards can include direct reve-
nues from code or coding skills, knowledge gained from the cod-
ing experience that can be marketed, along with the self-
marketing to potential employers, and just for the recognition
from their peers in the community. The personal needs mentioned

include the initiation of projects to create products to fill gaps in
the current software by opening them to the community.

We believe that the motivation for documenting open source
software corresponds to the motivations for developing for open
source projects. Documenting open source software remains an
important part of realizing the vision of the software developer or
developers for the open source project. Oram [23] suggests sever-
al reasons why community documentation, that is, documentation
generated by developers and individual users with the goal of
helping others use the open source software, exists. Much like the
explanations for motivations about creating open source software,
documentation of open source software can be motivated by fac-
tors that are personal and for the betterment of the community
who uses the software. The reasons for developing documentation
include providing informal support outside of any official docu-
mentation to promote the software and helping others on the as-
sumption that the documentation writer will be helped in the fu-
ture. Helping others in the community also provides a sense of
personal gratitude and builds a reputation amongst the open-
source community, which can lead to personal growth for the
writer. Oram [23] also points out that there are potential financial
results for documentation through paid sites. While many of these
motivations are external, we feel that the resulting documentation
represents the values of the community because the individual
members of the community decide to write it.

2.3 Evaluating API Documentation
We studied API documentation as an artifact of the software de-
velopment communities that exists around open-source software
libraries and applications. Studying artifacts is common in contex-
tual design [11] and anthropological research [12]. Because these
artifacts are produced by the community, they represent what the
community values [13].

We used a heuristic evaluation method [14] to assess the arti-
facts we found in a way that would be consistent across all arti-
facts and enable us to study them individually and as a group. We
collected the list of elements for our heuristic evaluation from the
literature cited in the previous section and Watson [15], who
summarized the high-level components of API documentation.
Because we were reviewing online documentation only, we also
referred to the Association of Support Professionals [16] best
support site criteria document for additional insight into creating
our list of evaluation criteria.

3. METHOD
We assessed API documentation of open-source software libraries
for the presence of the documentation elements and the page de-
sign and writing quality. Based on the existing literature, we de-
signed the method to test the hypothesis: The documentation of
open-source software will contain the elements that software de-
velopers want, as reported in past research. To test this, we de-
veloped a list of documentation elements identified in past studies
and then evaluated open-source API documentation sets, tabulat-
ing the documentation elements we found.

3.1 API Documentation Studied
We wanted to find a collection of software that represented a
range of open-source software development communities. Our
first attempt to select documentation for the study was to take a
simple random sample from the catalog of more than ½ million
open-source software apps and libraries listed at www.ohloh.net, a
catalog of open-source software that has been used in other stud-
ies of open source software [24]. However, the vast majority of
the software we found using this method had very small commu-

nities as measured by users and contributors listed in the catalog.
Many of the projects from our initial random sample showed very
little activity, appeared to have very few users, or did not appear
to be viable projects. We decided that studying inactive or aban-
doned projects would not accurately reflect the values of an ongo-
ing and active software community.

To make sure we studied viable software communities, we
took another sample by selecting the 100 most popular applica-
tions listed on ohloh.net. Studying the most popular applications
would allow us to study the artifacts of a software community that
had enough time and resources to enable the documentation to
reach a state that represents the community’s values. While this
sample does not represent all the software in the open-source cata-
log, it does represent the more active software projects in the cata-
log—those that have a large number of the open-source software
developers who are the ultimate subject of our research.

Of the 100 open-source projects we started with, we elimi-
nated the projects that did not have a programmable interface
intended for software developers. Some of the projects we studied
had both an end-user interface and an API for software develop-
ers. In those cases, we studied only the API. We also eliminated
command-line tools, operating systems, and system-building pro-
jects because they represent niche audiences that are distinct from
those of general APIs. The result was the 33 open-source software
projects listed in Table 1.

Table 1. Open-source API documentation studied

 Adblock Plus
 Apache

OpenOffice
 CakePHP
 Common Unix

Printing Sys-
tem (CUPS)

 Cygwin
 Django
 Drupal (core)
 Eclipse Plat-

form Project
 FileZilla Fire-

bug
 GIMP

 Git
 GNOME
 GTK+
 Hibernate
 Inkscape
 jQuery
 JUnit
 KDE
 MediaWiki
 MySQL
 NetBeans

IDE
 Perl
 PHP

 PostgreSQL
Database
Server

 Python pro-
gramming
language

 Ruby on Rails
 Samba
 SQLite
 Subversion
 Trac
 VirtualBox-

Open Source
Edition

 WordPress

3.2 Study Heuristic
We grouped the API documentation elements into three general
categories for our evaluation:
� Overall documentation elements

Elements that characterize the general nature of the develop-
er documentation.

� Documentation entry/home page elements
Elements found on the “home page” or top-level page of the
developer documentation.

� API reference topic elements
Elements found in the API reference topics.

3.2.1 Assessment elements
Tables 2, 3, and 4 list the specific documentation elements we
assessed in each category.

Table 2. Overall documentation aspects

Question Rating Scale
How did you find the
documentation? (the nav-
igation method used)

Link from home page
Link from other page
Search, internal to the site
Search, external to the site

Can you find video tutori-
als for using the API in the
documentation?

Yes
No

Can you find sample apps
or links to samples in the
documentation?

Yes
No

*Provide a qualitative
estimate of the site quality
as a whole.

Excellent
Good
Fair
Poor
Terrible
Other

How easy was it to find
the documentation?

Easy = effortless
Hard = not easy

Can you find code tutori-
als in the documentation?

Yes
No

Can you find an API
Overview in the documen-
tation?

Yes
No

Note any comments from
your experience with the
site.

Free text comment field

The element noted by an asterisk in Table 2 was reviewed
separately from the elements in Table 5. The evaluation of “Pro-
vide a qualitative estimate of the site quality as a whole” occurred
during the initial evaluation of the documentation to capture a
“first impression” of the documentation. After reviewing the rat-
ings of the site quality overall, we added the criteria in Table 5 to
identify some of the components that might have contributed to
the first-impression rating. The elements in Table 5 were then
reviewed in a second evaluation.

Table 3. Entry page documentation elements

Question Rating Scale
Note the entry page URL URL of page
Does the entry page have
a documentation overview
or a link to an overview?

Yes
No

Does the entry page have
a value proposition for the
API?

Yes
No

Does the entry page have
getting-started content or a
link to getting-started
content?

Yes
No

Does the entry page have
a table-of-contents?

Yes
No

Note any other comments
from your experience with
the entry page.

Free text comment field

Table 4. API reference topic elements

Question Rating Scale
How did you find the API
Reference?

Link from home page
Link from other page
Search, internal to the site
Search, external to the site

Note the API reference
topic homepage URL

URL of page

Describe the navigation
used by the reference topics

Hub-Spoke
Menu-Content
Other

Did the reference topics
provide interactions with
the code?

Yes
No

How easy was it to find the
API reference?

Easy = effortless
Hard = not easy

Estimate the API Size
(from the number of ref.
topics).

Small: APIs with < 10 high-
level objects (e.g. classes,
objects, etc.)

Medium: APIs with 10-99
high-level objects

Large: APIs with 100-999
high-level objects

Huge: APIs with 1,000 or more
high-level objects

Describe how the reference
topic pages are organized
(multi/single).

Single-Elem/Page
Multiple-Elem/Page
Other

Did you find code snippets
in most of the reference
topics you studied?

Yes
No

Table 5. Design and writing quality criteria

Question Rating Scale

Rate the level of design
elements used on a refer-
ence topic.

High: Many design elements,
such as multiple fonts, text
layout styles, images, and
other visual design ele-
ments such as lines, shad-
ings, and adaptive page de-
sign.

Lo: One or two fonts, minimal
use of layout and visual de-
sign elements such as lines
and shading.

Rate the reference topic
pages’ content quality in
terms of richness and clari-
ty.

High: writing is clear, detailed,
and can be understood,
even by someone who is
not familiar with the API.

Lo: writing is unclear, lacking
in detail, and is difficult to
understand.

The rating scales for the questions in Table 5 were intention-
ally general to make them easy to rate consistently while provid-
ing enough detail to identify the patterns and sites that might merit
further study.

3.2.2 Documentation Elements from Past Research
Table 6 shows how the elements we summarized from past re-
search match the assessment elements in our study.

Table 6. Past research and assessment elements

Documentation element
from past research

Assessment questions in this
study

Overview documentation. Does the entry page have a
documentation overview or
a link to an overview?

Can you find an API Overview
in the documentation?

Short code “snippets” that
demonstrate usage of an
API in context.

Did you find code snippets in
most of the reference topics
you studied?

Code examples that show
best-practices with an API

Can you find sample apps or
links to samples in the doc-
umentation?

Scenario and task-based
documentation.

Can you find code tutorials in
the documentation

Limitations and error han-
dling.

Not studied

Meaningful documentation
(as opposed to “filler” or
“boilerplate” content that
adds little or no value to
what is obvious).

Rate the reference topic pages’
content in terms of richness
and clarity.

The limitations and error-handling element was not rated in
this study because we could not characterize it in a way that we
could evaluate.

3.3 Study Method and Coding
Four researchers evaluated the API documentation of the selected
software projects (Table 1) for the elements listed in the preceding
section. Three of the four researchers had used APIs and API
documentation in the past to develop software.

The researchers practiced coding API documentation that
was not part of the study sample to improve inter-rater reliability
and refine the definitions of the documentation elements. Through
multiple iterations and review sessions, the researchers deter-
mined the operational definitions of each element in the evalua-
tion rubric. At least one coder then assessed the documentation of
each API in the final set of APIs and a subset of the APIs was
reviewed by the other coders for consistency and agreement. The
few disagreements found in this process were reviewed and re-
solved by agreement of all researchers before the data were ana-
lyzed.

4. FINDINGS
We evaluated the API documentation of the open-source software
listed in Table 1 to find the documentation elements listed in Ta-
bles 2-4. In the first evaluation, we tabulated the characteristics
described in our rubric; however, we also identified aspects of the
documentation that the original survey did not include. We added
the elements in Table 5 to our rubric and then evaluated those
elements of the documentation.

4.1 Documentation Elements
Table 7 lists the frequency of the key documentation elements in
the API documentation studied. Except for the API overviews, our
findings support our hypothesis in that the documentation ele-
ments listed as required or desired by software developers in API
documentation were found in most of the API documentation we
studied.

Table 7. Key documentation elements in
documentation studied (n = 33)

Documentation element evaluation question

Does the entry page have a documentation
overview?

82% Yes

Can you find an API Overview in the docu-
mentation?

42% Yes

Did you find code snippets in most of the ref-
erence topics you studied?

85% Yes

Can you find code tutorials in the documenta-
tion

79% Yes

Can you find sample apps or links to samples
in the documentation?

55% Yes

Rate the reference topic pages’ content in
terms of richness and clarity.

82% Good
or Exc.

4.2 Design and Writing Quality Evaluation
In our first evaluation of the documentation elements, we found
that 21 of the 33 documentation sets (64%) had an overall impres-
sion of good or excellent; however, we encountered a broad range
graphic-design and writing styles. To characterize this variation
better, we added the evaluation criteria listed in Table 5 and re-
viewed the documentation sets again to evaluate these elements.
We found that the qualitative ratings were surprisingly high—
specifically, more than half of the open-source documentation we
studied (19 of 33) had both high-quality design and high-quality
writing (Table 8). This supports the notion that the software de-
velopment communities value quality in both design and writing,
which suggests that craftsmanship is also valued. High-quality
writing appeared more often than high-quality design—we found
that 82% of the API documentation studied had high-quality writ-
ing as compared to the 61% that had high-quality design. Table 8
shows the results of this evaluation. Using a Pearson Chi-Square
test, we found significant patterns in the design and writing quali-
ty, revealing that writing quality was high in most cases.

Table 8. Design and writing

 Writing Quality

Pearson
Chi-Square

 Low
(n=6)

High
(n=27)

D
es

ig
n

Q
ua

lit
y Low (n=13) 5 8 2 (1, N = 33) =

5.93, p = .015 High (n=20) 1 19

The following sections illustrate examples of the different
types of design and writing we encountered in our study.

4.2.1 Low-Design/Low-Writing Quality
We grouped documentation sets into the low-design/low-

writing quality group if the reference pages had:
� A page design with only one or two fonts, minimal use of

layout and visual design elements such as lines and shading.
� Page content where the writing is unclear, lacking in detail,

or is difficult to understand.

Figure 1 [25] is an example of a reference topic with minimal
visual design elements and writing that provides very little detail.

Figure 1. Example of low-design/low-writing qualitydocumen-
tation Copyright (c) 2000, 2007 IBM Corporation and others.

4.2.2 Low-Design/High-Writing Quality
We grouped documentation sets into the low-design/high-

writing quality group if the reference pages had:
� A page design with only one or two fonts, minimal use of

layout and visual design elements such as lines and shading.
� Page content where the writing is clear, detailed, and can be

understood, even by someone who is not familiar with the
API.

Figure 2 [26] is an example of a reference topic with minimal
visual design elements, but detailed text.

Figure 2. Example of low-design/high-writing quality
documentation

4.2.3 High-Design/Low-Writing Quality
We grouped documentation sets into the high-design/low-

writing quality group if the reference page had:
� A page design with many design elements, such as multiple

fonts, text layout styles, images, and other visual design ele-
ments such as lines, shadings, and adaptive page design.

� Page content where the writing is unclear, lacking in detail,
or is difficult to understand.

Figure 3 [27] is an example a reference topic with many vis-
ual design elements, but writing that lacks detail.

4.2.4 High-Design/High-Writing Quality
We grouped documentation sets into the high-design/high-

writing quality group if the reference page had:
� A page design with many design elements, such as multiple

fonts, text layout styles, images, and other visual design ele-
ments such as lines, shadings, and adaptive page design.

� Page content where the writing is clear, detailed, and can be
understood, even by someone who is not familiar with the
API.

Figure 3. Example of high-design/low-writing quality docu-
mentation. Copyright © 2013 Cake Software Foundation, Inc.

Figure 4 [28] is an example of a reference topic with numer-
ous visual styling elements and detailed text.

Figure 4. Example of high-design/high-writing quality docu-
mentation. Copyright © 2001-2013 The PHP Group.

4.3 Analysis of Design and Writing Quality
To test for consistency between the detailed quality elements and
our initial overall assessment, we compared our initial overall
quality assessment to the more specific ratings recorded later in
the study by using a Pearson Chi-Square test. Table 9 shows that
we found a statistically significant (p < .05) relationship between

the overall rating and the specific ratings, indicating consistency
between them.

We looked for a significant relationship between the fre-
quency of the document elements listed in Table 6 and the quality
evaluations using three one-way ANOVA tests. Table 10 shows
that the average frequency of the documentation elements found
in an API documentation set increased with the assessments of the
design and writing quality, as well as the overall impression of the
documentation set.

While documentation with high quality writing, design, and
with good and excellent overall site quality had more elements
then low quality documentation, on average, there was a signifi-
cant effect seen at the p < .05 level in only the writing quality and
site quality on the number of documentation elements found.
There was no significant effect observed between the element
frequency and the design quality.

Table 9. Overall impression and quality dimensions

 Overall evaluation of
API documentation

Pearson Chi-Square
 Poor -

Fair
Good
- Exc.

D
es

ig
n

Q
ua

lit
y Low 10 3 2 (1, N = 33) = 15.249,

p = .000 High 2 18

W
ri

ti
ng

Q

ua
lit

y Low 5 1 2 (1, N = 33) = 6.991,
p = .008 High 7 20

Table 10. Document element frequency and quality

 Number of document
element categories found

Mean

Std.
Dev. N ANOVA

D
es

ig
n

Q
ua

lit
y Low 3.31 1.601 13 [F (1,31) = 1.877,

p = 0.181] High 4.05 1.468 20

W
ri

ti
ng

Q

ua
lit

y Low 2.33 1.366 6 [F (1,31) = 7.537,
p = 0.010] High 4.07 1.412 27

Si
te

 Q

ua
lit

y

Fair -
Poor 2.92 1.443 12

[F (1,31) = 6.590,
p = 0.015] Good

- Exc. 4.24 1.411 21

To see which of the individual elements, if any, were associ-
ated with high-quality documentation, we looked at the frequency
of each of the documentation elements listed in Tables 2, 3, and 4.
To find a significant relationship between each one and the quality
factors, we used a Pearson Chi-Square test. Tables 11 and 12
show the only significant patterns we found. Of all the documen-
tation elements we evaluated, only the presence of code tutorials
and code snippets showed a significant relationship (p < .05) with
design and writing quality.

Table 11. Code tutorials and quality

 API documentation
has code tutorials

Pearson Chi-Square No Yes

D
es

ig
n

Q
ua

lit
y Low 5 8 2 (1, N = 33) = 3.82,

p = .051 High 2 18

W
ri

ti
ng

Q

ua
lit

y Low 4 2 2 (1, N = 33) = 9.07,
p = .003 High 3 24

Table 12. Code snippets and quality

 API reference topics
have code snippets

Pearson Chi-Square No Yes

D
es

ig
n

Q
ua

lit
y Low 4 9 2 (1, N = 33) = 4.07,

p = .044 High 1 19

W

ri
ti

ng

Q
ua

lit
y Low 3 3 2 (1, N = 33) = 6.93,

p = .008 High 2 25

5. DISCUSSION
The presence of most of the key elements in the documentation
we studied supports the hypothesis that open-source software
development communities, at a macro level, put the same docu-
mentation elements into their documentation as the software de-
velopers asked for in studies and interviews. That the software
communities voluntarily include these elements in the documenta-
tion they produce supports the idea that they value these API doc-
umentation elements whether they are responding to surveys and
interviews, or actually writing software and documentation.

In the course of this study, we experienced several occasions
in which we needed to review and revise our evaluation criteria.
Initially, we required several rounds of practice evaluations to
refine the operational definitions of the elements we were study-
ing. After our first full review, we found high variability in the
perceived quality of the API documentation, even though we were
studying the most popular open-source software products listed in
ohloh.com. To investigate this variation further, we evaluated the
design and written quality of the documentation sets in a second
review of the API documentation.

5.1 Dealing with the Diversity
Early in the study, we had difficulty identifying some of the doc-
umentation elements with consistency using our initial definitions
because they did not accommodate the variety of documentation
we encountered. While the documentation element definitions
seemed clear at the beginning of the project, as we applied them
in our initial assessment, it became evident they needed refine-
ment to accommodate the diversity of documentation styles, page
formats, and rater experience levels. It took several iterations of
trial-and-review to refine the operational definitions of the differ-
ent elements such that the reviewers could assess the documenta-
tion in a reliable, consistent way.

The wide variety of content we encountered and the difficul-
ty we had finding and applying a consistent definition of those
elements makes us wonder about the consistency of what past

researchers have studied and how we talk about these elements in
the literature. In this study, we found that some documentation
elements were easier to recognize than others were. For example,
Robillard [3] describes a taxonomy of program-code examples
that was clear and easy for the researchers to recognize.
� Code-snippet (showing the function being called in a specific

context for illustration).
� Sequences of small examples to illustrate functionality (tuto-

rial examples).
� Sample apps (complete and functional programs that use the

function).
� Production code (source code of software that is uses the

function in a customer-facing application or scenario).

On the other hand, identifying the elements that made up the
intent documentation [3] was more challenging. While we tried to
operationalize this in a way that mapped to recognizable docu-
mentation elements, some intent documentation, such as that
which describes specific performance, usage limitations, or error
conditions, might be found inside specific reference topics and not
in a single topic for an API. Intent documentation that describes
higher-level concepts of how to use the API in context, on the
other hand, might be more appropriate in an overview or some
other type of conceptual topic that focuses on the API as a whole
rather than just a single element of the API. Having the infor-
mation distributed around the documentation could make it hard
for developers to know where to find such information, or to
know if it even exists at all, until they spend time learning what is
and is not documented. It also makes it hard to assess its presence
with any accuracy in a survey such as this one.

In addition to the different forms the elements sought by de-
velopers can take, the vocabulary used is also critical to discovery.
Ko and Riche [29], observed how documentation could exist but
remain invisible to the user if they did not know the correct vo-
cabulary to use to find it. Finally, Robillard [3] points out that too
much intent documentation can make the documentation difficult
to use suggesting that this might be judged better in a specific
context, rather than just a simple test for presence.

The diversity of API documentation content and format pre-
sented a challenge to our study. On the one hand, technical writ-
ing curriculum tells technical writers to know their audience and
to write to them [30]. Given that the documentation we studied
was written by the community who also use it, it is reasonable to
assume they are writing the documentation they need in the for-
mat they prefer. Such a focused approach makes sense in a con-
text limited to a single API or library. However, today, it is in-
creasingly common for software developers to use software and
documentation from a wide variety of sources as they adopt and
apply new technologies. Documentation written to a specific au-
dience can present challenges for developers who come from
another perspective or background.

While our survey identified the presence of specific docu-
mentation elements, it did not address the usability of the content
or its suitability to any task. The elements we studied were pre-
sumed to be useful in that they had been identified as necessary or
desired in the literature. The diversity of the documentation we
reviewed, however, indicates that the problem might be more
nuanced than just ensuring the API documentation has a collec-
tion of requested elements, for example the matter of craftsman-
ship in the documentation design and writing.

5.2 Recognizing Craftsmanship
In spite of the diverse character of the API documentation we
reviewed, high quality writing and attention to detail was more
common than not. The high percentage of documentation sets we

found with writing that was clear and detailed indicates quality
writing is a common value—one that has not been discussed much
in the literature about API documentation. That there was docu-
mentation without it, however, indicates that it is a property that
cannot be assumed. The use of visual design elements in the API
reference topics was also higher than we expected at the begin-
ning of the study, and it, too, is an aspect of API documentation
that has not received much coverage.

While the occurrence of high quality design and writing sug-
gests that attention to detail in the content is valued, we do not
know if it has any effect on usability or popularity. In our study,
for example, we found no significant relationship between any of
the quality dimensions and the software’s popularity rank or rat-
ing in ohloh.com. All the API documentation we studied came
from the top 100 open-source software projects in ohloh.net, yet
there was considerable variation in the documentation quality.

5.3 Threats to Validity
We assessed the API documentation of open-source software for
the presence of specific documentation elements. In any specific
documentation sample, the documentation could have been pro-
duced by the community on demand, by an organized or profes-
sional documentation effort, or some combination—the extent of
which we do not know. As open-source software and documenta-
tion, we assume that the API documentation represents the values
and needs of each individual community.

As open-source software and documentation, it is possible; in
fact, it is quite likely, that the API documentation we studied does
not represent API documentation as a whole. However, that is not
relevant to the research question of the study because we are using
open-source and community-generated documentation as an arti-
fact of the software community to gain insight into what they
value. In that regard, a selection of open-source and community-
driven documentation is appropriate. The literature indicates that
there is a high-degree of overlap between open-source and profes-
sional, commercial software developers. In many cases, they are
the same people. As such, these findings should represent their
values whether they are programming for hire or not. While we
feel that our findings reflect the values of software developers,
these findings should not be generalized to API documentation
that was not included in the study.

One aspect of the open-source documentation that became
known in our assessment was that many examples of open-source
software documentation relied on content that was not part of an
organized documentation set. Open-source software developers (if
not all software developers) are accustomed to using community
content such as forum posts, blogs, and other unstructured docu-
mentation. While not recorded in our findings, we observed that
relying on these unstructured types of documentation appeared to
be common. This could, however, cause our study to understate
the frequency of documentation elements for a specific API doc-
umentation set. For example, it might be common in a particular
software community to have code samples or sample programs
separate from the API documentation—in which case they would
exist for and be known by the community, but could have been
missed by our assessment method.

While we made some qualitative assessments of the docu-
mentation’s visual design and writing quality, this analysis was
conducted at a macro level. We did not perform any formal con-
tent analysis on the documentation sets we studied. Such analysis
exceeded the scope of this research; however, the findings from
this study suggest such an analysis would be worthwhile.

6. CONCLUSIONS
The findings of our study of API documentation as an artifact of
open-source software communities corroborate the findings of
past research into what software developers want and need in API
documentation. Past research describes a need for the following
elements in API documentation, most of which we found in the
documentation we studied.

� Overview documentation.
� Short code “snippets” that demonstrate usage of an API in

context.
� Code examples that show best-practices with an API
� Scenario and task-based documentation.
� Meaningful documentation (as opposed to “filler” or “boiler-

plate” content that adds little or no value to what is obvious).

The fact that most of the communities who support the soft-
ware we studied provided these elements in the APIs they sup-
ported suggests they represent common values among open-
source software developers. That the design quality and writing
quality of the API documentation we studied were high indicates
the developers in these software communities also value these
attributes enough to include them in their documentation.

6.1 Documentation is more than the Sum of
its Parts
Our study found that open-source software documentation has, for
the most part, the elements that the literature identified as neces-
sary. However, we also found that an inventory is not sufficient to
characterize a documentation set accurately. Aspects such as de-
sign quality, writing quality, terminology, and navigational af-
fordances are also critical elements to consider. While design and
writing quality, per se, do not appear as requirements in the litera-
ture, the variation of these dimensions that we encountered sug-
gests that the perceived need for such quality varies. Perhaps
high-quality design and writing is assumed; however, our study
indicates that high quality design and writing is not universally
consistent. The variation that we found in these quality dimen-
sions suggests there would be value into further study into how
they affect API documentation usability and utility.

6.2 What are we Talking About, Anyway?
While answering some questions, our research also raises others.
If the software development communities are producing the doc-
umentation that software developers are asking for when surveyed
and interviewed, what is the basis of their recent complaints? This
study gave us a new appreciation for the level of diversity that
exists in the world of “API documentation.” Our survey spanned a
wide swath of API documentation, much wider than most soft-
ware developers would tend to encounter in a similar period. At
the same time, we touched upon only a very small part of the API-
documentation universe. It is possible that past API studies and
criticisms are each seeing small and different pieces of a much
larger whole—not unlike the fable of the blind men describing an
elephant.

6.2.1 Different Worlds
The literature we reviewed indicates that open-source software
developers have a lot in common with professional (paid) soft-
ware developers—in fact, the same people often work on both
types of software. It is possible that the findings from our study of
open-source API documentation do not generalize to the Mi-
crosoft developers’ experience in Robillard [7] and Robillard and
DeLine [3] or the Android developers’ experiences in Parnin [5].
It could be that it is specific examples from these environments

that do not meet the needs of the developers—not a general prob-
lem with overall documentation that is responsible for the findings
in those studies. Further, the difficulty we experienced in opera-
tionalizing the element definitions at the beginning of our research
suggests that differences in element definitions could be compli-
cating the discussion. While there are differences in in the sub-
jects of each study, the important point to remember is the agree-
ment between their conclusions. However, the definitions and
descriptions of the different elements need additional refinement
and clarification for practitioners to be able to apply the findings
from these studies.

6.2.2 Different Methods
Our study differs from those in the literature we studied in that we
studied the products of software communities without involving
them directly. We looked at the artifacts that result from their
actions, without them knowing we were studying them—in fact,
we looked at their work long after they completed it. In that sense,
there was no way for our research to influence their actions. On
the other hand, in most of the earlier studies, the researchers inter-
acted directly with the participants—the developers. Robillard and
DeLine’s study [3] focused on learning obstacles by asking, for
example, “For each type of obstacle described below, please rate
how severe this type of obstacle was in your experience learning
the API you mentioned above.” Such a leading question could
influence the response. While that research focuses on a single
aspect of learning APIs, it also highlights the need, in a subject as
large and diverse as this one, for multiple studies and multiple
study methods to construct a complete picture. Any one method,
by itself, is likely to tell only a partial story, at best.

6.2.3 Different Perspectives
While studying the elements of a documentation set provides an
inventory of its contents, it does not describe the suitability for a
specific task to a specific audience. For the target audience of
software developers, the suitability of the documentation to their
task is very relevant and likely to influence their opinion of a doc-
umentation set. To the software developers using the documenta-
tion, if they cannot find what they are looking for, to them, it does
not exist—even if we found it in our inventory. This difference
does not make an inventory less valuable; however, it might iden-
tify ways in which the inventory could be improved. While the
different methods provide useful and different insights, it is espe-
cially important to recognize when the methods reinforce each
other, for example, how our study reinforced the findings from the
more direct study methods used to observe software developers in
past studies.

7. FUTURE WORK
The diversity of documentation content and content styles we
found identified more questions and opportunities for study. It
would be valuable to know if variations of these aspects of the
documentation influence the software developer’s experience and
assessment of it. Exploring the influence of these factors, for ex-
ample, could inform future authoring systems and documentation
templates to help make it faster and easier to produce API docu-
mentation that software developers need. Our study also rein-
forced the need to study the documentation in context, so identify-
ing methods and practices to collect and report this information
could help identify how to improve existing and plan future doc-
umentation.

Because the documentation we studied came from the com-
munity it serves, it is reasonable to assume that each specific
community tailors the documentation for that community. In that

sense, the diverse content we found in our study is a good thing.
At the same time, such an uneven content landscape presented a
challenge to us as researchers and we suspect that it also presents
a challenge to software developers who have to work with multi-
ple libraries and products. It would be helpful to know the impact
of variations in content, layout, and organization on search, com-
prehension, and usability. We suspect these differences compli-
cate developers’ understanding and learning in using different
APIs. As APIs and API users become more numerous and more
diverse, this diversity could add documentation requirements that
did not heretofore exist.

Modern software development also appears to encourage
just-in-time learning for specific tasks and in moving on to the
next task [8]. In such a scenario, software developers coming to
any documentation set will arrive with the perspective of a new
user more so than that of an expert. Although they might have
used the software and documentation in the past, when they return
after using other software, they will still need to familiarize them-
selves with the navigation and terminology all over again, just like
a new user. Accommodating these scenarios, which were uncom-
mon in the past, will require additional research to identify the
best practices that will empower the users of API documentation
today and into the future.

8. ACKNOWLEDGEMENTS
We would like to thank Black Duck Software who hosts
OhLoh.com, which provided the catalog open-source software
and the data for the software and documentation we studied.

9. REFERENCES
[1] Abrams, B. 2008. Number of types in the .NET Framework.

Brad Abrams. Retrieved from
http://blogs.msdn.com/b/brada/archive/2008/03/17/number-
of-types-in-the-net-framework.aspx

[2] Programmable web. 2013. Keeping you up to date with
APIs, mashups and the Web as platform. Retrieved May 19,
2013, from http://www.programmableweb.com/

[3] Robillard, M. P., & DeLine, R. 2011. A field study of API
learning obstacles. Empirical Software Engineering, 16(6),
703–732. doi:DOI 10.1007/s10664-010-9150-8

[4] Lethbridge, T. C., Singer, J., & Forward, A. 2003. How
software engineers use documentation: The state of the
practice. Software, IEEE, 20(6), 35–39.

[5] Parnin, C. 2013. API documentation: Why it sucks. ninlabs
research. Retrieved May 19, 2013, from
http://blog.ninlabs.com/2013/03/api-documentation/

[6] Nykaza, J., Messinger, R., Boehme, F., Norman, C. L.,
Mace, M., & Gordon, M. 2002. What programmers really
want: Results of a needs assessment for sdk documentation.
In Proceedings of the 20th Annual International Confer-
ence on Computer Documentation (pp. 133–141). Presented
at the SIGDOC 2002, Toronto, Ontario, Canada: ACM.

[7] Robillard, M. P. 2009. What makes APIs hard to learn?
answers from developers. Software, IEEE, 26(6), 27–34.

[8] Sillito, J., & Begel, A. 2013. App-directed learning: An
exploratory study. Presented at the 6th International Work-
shop on Cooperative and Human Aspects of Software En-
gineering, San Francisco, CA, USA.

[9] Mitchell, G. E. 1993. What do users really want from com-
puter documentation? In IPCC 93 Proceedings. The New
Face of Technical Communication: People, Processes,
Products (pp. 27–31). Presented at the International Profes-
sional Communication Conference 1993, IEEE.

[10] Novick, D. G., & Ward, K. 2006. What users say they want
in documentation. Presented at the SIGDOC 2006, Myrtle
Beach, South Carolina, USA: ACM.

[11] Holtzblatt, K., Wendell, J. B., & Wood, S. 2004. Rapid
contextual design: a how-to guide to key techniques for us-
er-centered design. Morgan Kaufmann.

[12] Bernard, H. 2006. Research methods in anthropology:
qualitative and quantitative approaches (Fourth Edition.).
Lanham, MD, USA: Altamira Press.

[13] von Krogh, G., Haefliger, S., Spaeth, S., & Wallin, M. W.
2012. Carrots and rainbows: Motivation and social practice
in open source software development. MIS Quarterly-
Management Information Systems, 36(2), 649–676.

[14] Nielsen, J. 1993. Usability Engineering. Boston. MA. USA:
Academic press.

[15] Watson, R. B. 2012. Development and application of a
heuristic to assess trends in API documentation. In Pro-
ceedings of the 30th ACM International Conference on De-
sign of Communication (pp. 295–302). Presented at the
SIGDOC 2012, Seattle, WA, USA: ACM.

[16] Association of Support Professionals, The. 2013. The Ten
Best Web Support Sites of 2013: Site Scoring System.
ASPonline.com. Retrieved May 19, 2013, from
http://www.asponline.com/scoring13.pdf

[17] Hars, A., & Ou, S. 2002. Working for free? Motivations for
participating in open-source projects. International Journal
of Electronic Commerce, 6, 25–40.

[18] Hertel, G., Niedner, S., & Herrmann, S. 2003. Motivation
of software developers in Open Source projects: an Inter-
net-based survey of contributors to the Linux kernel. Re-
search policy, 32(7), 1159–1177.

[19] Oreg, S., & Nov, O. 2008. Exploring motivations for con-
tributing to open source initiatives: The roles of contribu-
tion context and personal values. Computers in Human Be-
havior, 24(5), 2055–2073.
doi:doi:10.1016/j.chb.2007.09.007

[20] Shah, S. K. 2006. Motivation, governance, and the viability
of hybrid forms in open source software development.
Management Science, 52(7), 1000–1014.

[21] Wu, C.-G., Gerlach, J. H., & Young, C. E. 2007. An empir-
ical analysis of open source software developers’ motiva-
tions and continuance intentions. Information & Manage-
ment, 44(3), 253–262. doi:doi:10.1016/j.im.2006.12.006

[22] Ye, Y., & Kishida, K. 2003. Toward an understanding of
the motivation of open source software developers. In Soft-
ware Engineering, 2003, Proceedings. 25th International
Conference on (pp. 419–429). Presented at the Software
Engineering, 2003, International Conference on, IEEE.

[23] Oram, A. 2007. Why do people write free documentation?
results of a survey. LAMP: The Open-Source Web Plat-
form. Retrieved from http://www.onlamp.com/lpt/a/7062

[24] Ellis, H. J., Purcell, M., & Hislop, G. W. 2012. An ap-
proach for evaluating FOSS projects for student participa-
tion. In Proceedings of the 43rd ACM Technical Symposi-
um on Computer Science Education (pp. 415–420). Pre-
sented at the SIGCSE 2012, Raleigh, North Carolina, USA.

[25] Help - Eclipse Platform. (n.d.). Retrieved July 20, 2013,
from
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse
.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt
%2Fdebug%2Fcore%2FIJavaArrayType.html&anchor=get
ComponentType(). Included under Eclipse Public License

[26] Chapter 11. HQL and JPQL. (n.d.). Retrieved July 20,
2013, from
http://docs.jboss.org/hibernate/orm/4.1/devguide/en-
US/html/ch11.html#d5e2552. Included under LGPL v2.1.

[27] Class AppHelper | CakePHP. (n.d.). Retrieved July 20,
2013, from http://api.cakephp.org/2.3/class-
AppHelper.html. Copyright © 2013 Cake Software Foun-
dation, Inc.

[28] PHP: substr - Manual. (n.d.). Retrieved July 20, 2013, from
http://php.net/manual/en/function.substr.php. Copyright ©
2001-2013 The PHP Group.

[29] Ko, A. J., & Riche, Y. 2011. The role of conceptual
knowledge in API usability. In Proceedings of the Visual
Languages and Human-Centric Computing (VL/HCC),
2011 IEEE Symposium on (pp. 173–176). Presented at the
Visual Languages and Human-Centric Computing
(VL/HCC), 2011 IEEE Symposium on, IEEE.

[30] Markel, M. 2006. Technical Communication (8th ed.). Bos-
ton. MA. USA: Bedford/St. Martins.

